977 resultados para Metal-working lubricants
Resumo:
The Working in Australia’s Digital Games Industry: A Consolidation Report is the outcome of a comprehensive study on the games industry in Australia by Dr Sandra Haukka from the ARC Centre of Excellence for Creative Industries and Innovation (CCI) based at Queensland University of Technology in Brisbane. The study responds to concerns that Australia’s games industry would not reach its full potential due to a lack of local, highly skilled staff, and a lack of appropriately trained graduates with the necessary knowledge and skills. This is the first of two reports produced with the support of the Games Developers’ Association of Australia. Over coming months researchers will develop a future skills strategy report for the industry.
Resumo:
This research underlines the extensive application of nanostructured metal oxides in environmental systems such as hazardous waste remediation and water purification. This study tries to forge a new understanding of the complexity of adsorption and photocatalysis in the process of water treatment. Sodium niobate doped with a different amount of tantalum, was prepared via a hydrothermal reaction and was observed to be able to adsorb highly hazardous bivalent radioactive isotopes such as Sr2+ and Ra2+ions. This study facilitates the preparation of Nb-based adsorbents for efficiently removing toxic radioactive ions from contaminated water and also identifies the importance of understanding the influence of heterovalent substitution in microporous frameworks. Clay adsorbents were prepared via a two-step method to remove anionic and non-ionic herbicides from water. Firstly, layered beidellite clay was treated with acid in a hydrothermal process; secondly, common silane coupling agents, 3-chloro-propyl trimethoxysilane or triethoxy silane, were grafted onto the acid treated samples to prepare the adsorption materials. In order to isolate the effect of the clay surface, we compared the adsorption property of clay adsorbents with ƒ×-Al2O3 nanofibres grafted with the same functional groups. Thin alumina (£^-Al2O3) nanofibres were modified by the grafting of two organosilane agents 3-chloropropyltriethoxysilane and octyl triethoxysilane onto the surface, for the adsorptive removal of alachlor and imazaquin herbicides from water. The formation of organic groups during the functionalisation process established super hydrophobic sites along the surfaces and those non-polar regions of the surfaces were able to make close contact with the organic pollutants. A new structure of anatase crystals linked to clay fragments was synthesised by the reaction of TiOSO4 with laponite clay for the degradation of pesticides. Based on the Ti/clay ratio, these new catalysts showed a high degradation rate when compared with P25. Moreover, immobilized TiO2 on laponite clay fragments could be readily separated out from a slurry system after the photocatalytic reaction. Using a series of partial phase transition methods, an effective catalyst with fibril morphology was prepared for the degradation of different types of phenols and trace amount of herbicides from water. Both H-titanate and TiO2-(B) fibres coated with anatase nanocrystal were studied. When compared with a laponite clay photocatalyst, it was found that anatase dotted TiO2-(B) fibres prepared by a 45 h hydrothermal treatment followed by calcination were not only superior in performance in photocatalysis but could also be readily separated from a slurry system after photocatalytic reactions. This study has laid the foundation for the development of the ability to fabricate highly efficient nanostructured solids for the removal of radioactive ions and organic pollutants from contaminated water. These results now seem set to contribute to the development of advanced water purification devices in the future. These modified nanostructured materials with unusual properties have broadened their application range beyond their traditional use as adsorbents, to also encompass the storage of nuclear waste after concentrating from contaminated water.
Resumo:
The Northern Territory Government's Working Future: Outstations/Homelands (2009) policy statement gives effect to the Council of Australian Government's Closing the Gap policy on Indigenous housing and remote service delivery. These policies mark a radical shift in public policy that winds back the outstations and homelands movement that began in the 1970's. This paper examines Indigenous homelands policy and considers whether these policies are consistent with the Indigenous human rights and in particular the United Nations Declaration on the Rights of Indigenous Peoples (2007), which Australia endorsed in 2009. The author argues that the current homelands policy breaches a number of Indigenous human rights and promotes assimiliation by forcing Indigenous Australians to relocate to access basic services such as health, housing and education. As a consequence these policies are counter-intuitive to the overall Closing the Gap goals of improving Indigenous health outcomes because they fail to take into account the importance of country and culture to Indigenous wellbeing. She concludes that Australian governments need to formulate a homelands policy that is consistent with Indigenous human rights and in particular the right of self determination, enjoyment of culture and protection against forced assimilation.
Resumo:
This paper explains how the smoking policy at the Victorian Aboriginal Community Controlled Health Organisation (VACCHO) was developed as part of the Goreen Narrkwarren Ngrn-toura - Healthy Family Air project.
Resumo:
Universities continue to struggle with the need to combine the pedagogical benefits of collaborative learning with large scale, interactive and technologically sophisticated learning and teaching arrproaches and support systems. This challenge requires imaginative approaches if the outcome is not to the 'worst of both worlds' that results in confusion and disillusionism amongst students. This paper presents three case studies that use online technologies to provide collaborative teaching solutions arguably much superior to that possible without an online intervention.
Resumo:
Each year, The Australian Centre for Philanthropy and Nonprofit Studies (CPNS) at Queensland University of Technology (QUT) collects and analyses statistics on the amount and extent of tax-deductible donations made and claimed by Australians in their individual income tax returns to deductible gift recipients (DGRs). The information presented below is based on the amount and type of tax-deductible donations made and claimed by Australian individual taxpayers to DGRs for the period 1 July 2008 to 30 June 2009. This information has been extracted mainly from the Australian Taxation Office's (ATO) publication Taxation Statistics 2008-09. The 2008-09 report is the latest report that has been made publicly available. It represents information in tax returns for the 2008-09 year processed by the ATO as at 31 October 2010.
Resumo:
In this paper, we investigate theoretically and numerically the efficiency of energy coupling from a plasmon generated by a grating coupler at one of the interfaces of a metal wedge into the plasmonic eigenmode (i.e., symmetric or quasisymmetric plasmon) experiencing nanofocusing in the wedge. Thus the energy efficiency of energy coupling into metallic nanofocusing structure is analyzed. Two different nanofocusing structures with the metal wedge surrounded by a uniform dielectric (symmetric structure) and with the metal wedge enclosed between a substrate and a cladding with different dielectricpermittivities (asymmetric structure) are considered by means of the geometrical optics (adiabatic) approximation. It is demonstrated that the efficiency of the energy coupling from the plasmon generated by the grating into the symmetric or quasisymmetric plasmon experiencing nanofocusing may vary between ∼50% to ∼100%. In particular, even a very small difference (of ∼1%–2%) between the permittivities of the substrate and the cladding may result in a significant increase in the efficiency of the energy coupling (from ∼50% up to ∼100%) into the plasmon experiencing nanofocusing. Distinct beat patterns produced by the interference of the symmetric (quasisymmetric) and antisymmetric (quasiantisymmetric) plasmons are predicted and analyzed with significant oscillations of the magnetic and electric field amplitudes at both the metal wedge interfaces. Physical interpretations of the predicted effects are based upon the behavior, dispersion, and dissipation of the symmetric (quasisymmetric) and antisymmetric (quasiantisymmetric) filmplasmons in the nanofocusing metal wedge. The obtained results will be important for optimizing metallic nanofocusing structures and minimizing coupling and dissipative losses.