947 resultados para Metal-based catalysts


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Compreender a correlação entre as características de um catalisador particular e seu desempenho catalítico tem sido um dos principais objetos da pesquisa em catálise heterogênea a fim de usar esse conhecimento para o desenho racional de catalisadores mais ativos, seletivos e estáveis. A seletividade é um dos fatores mais importantes a ser controlado pelo desenho de catalisadores, podendo ser alcançada de diversas maneiras, levando-se em consideração mudanças do tipo estrutural, química, eletrônica, de composição, de cinética e de energia. O trabalho descrito nessa tese de doutorado compreende a síntese e caracterização de catalisadores compostos de nanopartículas de óxido de cobre, paládio e cobre-paládio e seu estudo em reações de hidrogenação e oxidação seletivas de hidrocarbonetos insaturados. Os catalisadores foram preparados através da deposição de nanopartículas dos metais cataliticamente ativos sobre suportes magneticamente recuperáveis compostos de nanopartículas de magnetita revestidas por sílica com superfícies funcionalizada com diferentes grupos orgânicos. A natureza magnética do suporte permitiu a fácil separação do catalisador do meio reacional pela simples aproximação de um ímã na parede do reator. O catalisador pôde ser completamente separado da fase líquida, fazendo com que a utilização de outros métodos de separação como filtração e centrifugação, comumente utilizados em sistemas heterogêneos líquidos, fossem completamente dispensados. Os catalisadores foram inicialmente testados em reações de hidrogenação de alquenos e alquinos. As reações de hidrogenação foram realizadas utilizando hidrogênio molecular como agente redutor, dispensando a utilização de agentes redutores mais agressivos. Os catalisadores compostos de NPs de Pd mostram excelente atividade e capacidade de reutilização na hidrogenação de cicloexeno, podendo ser utilizados em até 15 ciclos sem perda de atividade. Nas reações de hidrogenação de alquinos, os catalisadores que contêm cobre mostraram maior seletividade para a obtenção dos produtos de semi-hidrogenação, com destaque para o catalisador composto de NPs de CuPd, que não apresenta nem traços do produto de hidrogenação completa na amostra final. Esse catalisador bimetálico alia as características do paládio (elevada atividade) e do cobre (elevada seletividade) para fornecer um catalisador ativo e seletivo para a transformação desejada. Além disso, os grupos funcionais presentes na superfície do suporte catalítico mostraram influência na atividade e seletividade para a hidrogenação de alquenos e alquinos. Os catalisadores sintetizados também foram testados na reação de oxidação de cicloexeno e mostraram seletividade para a produção do composto carbonílico α,β-insaturado, cicloex-2-en-1-ona, que é um reagente de partida de grande interesse para a síntese de diversos materiais na indústria química. As reações de oxidação foram realizadas utilizando-se apenas O2 como oxidante primário, dispensando o uso de oxidantes tóxicos como cromatos, permanganatos ou compostos halogenados, que não são recomendados do ponto de vista ambiental. Os catalisadores sintetizados puderam ser reutilizados em sucessivos ciclos de oxidação, mostrando seletividade para a formação dos produtos alílicos em todos os ciclos. Os catalisadores foram estáveis sob as condições reacionais e não apresentaram problemas de lixiviação da espécie ativa para o meio reacional, que é comum na catálise heterogênea. Um estudo cinético mostrou que, mesmo no início da reação, o catalisador tem seletividade para a ocorrência de oxidação alílica em detrimento da reação de oxidação direta que dá origem ao epóxidos correspondente, e se mostrou condizente com o mecanismo proposto na literatura para a reação de oxidação de alquenos via radicalar.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Heavy metal-based quantum dots (QDs) have demonstrated to behave as efficient sensitizers in QD-sensitized solar cells (QDSSCs), as attested by the countless works and encouraging efficiencies reported so far. However, their intrinsic toxicity has arisen as a major issue for the prospects of commercialization. Here, we examine the potential of environmentally friendly zinc copper indium sulfide (ZCIS) QDs for the fabrication of liquid-junction QDSSCs by means of photoelectrochemical measurements. A straightforward approach to directly adsorb ZCIS QDs on TiO2 from a colloidal dispersion is presented. Incident photon-to-current efficiency (IPCE) spectra of sensitized photoanodes show a marked dependence on the adsorption time, with longer times leading to poorer performances. Cyclic voltammograms point to a blockage of the channels of the mesoporous TiO2 film by the agglomeration of QDs as the main reason for the decrease in efficiency. Photoanodes were also submitted to the ZnS treatment. Its effects on electron recombination with the electrolyte are analyzed through electrochemical impedance spectroscopy and photopotential measurements. The corresponding results bring out the role of the ZnS coating as a barrier layer preventing electron leakage toward the electrolyte, as argued in other QD-sensitized systems. The beneficial effect of the ZnS coating is ultimately reflected on the power conversion efficiency of complete devices, reaching values of 2 %. In a more general vein, through these findings, we aim to call the attention to the potentiality of this quaternary alloy, virtually unexplored as a light harvester for sensitized devices.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work, the WGS performance of a conventional Ni/CeO2 bulk catalyst is compared to that of a carbon-supported Ni-CeO2 catalyst. The carbon-supported sample resulted to be much more active than the bulk one. The higher activity of the Ni-CeO2/C catalyst is associated to its oxygen storage capacity, a parameter that strongly influences the WGS behavior. The stability of the carbon-supported catalyst under realistic operation conditions is also a subject of this paper. In summary, our study represents an approach towards a new generation of Ni-ceria based catalyst for the pure hydrogen production via WGS. The dispersion of ceria nanoparticles on an activated carbon support drives to improved catalytic skills with a considerable reduction of the amount of ceria in the catalyst formulation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Several motivations have prompted the scientific community towards the application of hybrid magnetic carbon nanocomposites in catalytic wet peroxide oxidation (CWPO) processes. The most relevant literature on this topic is reviewed, with a special focus on the synergies that can arise from the combination of highly active and magnetically separable iron species with the easily tuned properties of carbon-based materials. These are mainly ascribed to increased adsorptive interactions, to good structural stability and low leaching levels of the metal species, and to increased regeneration and dispersion of the active sites, which are promoted by the presence of the carbon-based materials in the composites. The most significant features of carbon materials that may be further explored in the design of improved hybrid magnetic catalysts are also addressed, taking into consideration the experimental knowledge gathered by the authors in their studies and development of carbon-based catalysts for CWPO. The presence of stable metal impurities, basic active sites and sulphur-containing functionalities, as well as high specific surface area, adequate porous texture, adsorptive interactions and structural defects, are shown to increase the activity of carbon materials when applied in CWPO, while the presence of acidic oxygen-containing functionalities has the opposite effect.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tese de doutoramento, Química (Química Física), Universidade de Lisboa, Faculdade de Ciências, 2016

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Automotive catalysts are the most effective short-term answer to air pollution from automobiles. Since strict control of exhaust emissions is, or will be,covered by legislation in most developed countries in the world, catalytic devices will be increasingly fitted to cars. There is consequently an urgent need for the development of catalysts that will not compete for scarce precious metal resources. A number of problems have already been identified in connection with base metal catalysts but quantitative investigations are lacking. The base metal reduction catalysts developed by Imperial Chemical Industries Limited, catalysts and Chemical Group, in collaboration with the Air Pollution Control Laboratory, B L Cars Limited for automotive emission control, are susceptible to de-activation by three major mechanisms. These are: physical loss of the wash-coat (a high surface area coating which supports the active species), aggregation of the active species and poisoning by fuel and engine oil additives. This thesis is especially concerned with the first two of these and attempts to indicate the relative magnitude .of their effect on the activity of. the catalysts. Aggregation of the active species or sintering, as it is loosely called, was studied by using impregnated granules to overcome effects due to the loss of the wash-coat. Samples were aged in a synthetic exhaust gas, free from poisons, and metal crystallite sizes were measured by scanning-electron microscopy. The increase in particle size was correlated with the loss in catalytic activity. In order to maintain a link with the real conditions of service a number of monolithic catalysts were tested in an engine-dynamometer and several previously tested endurance catalysts were examined. A mechanism is proposed for the break-up and subsequent 10s.5 of the wash-coat and suggestions for improved resistance to loss of the' coating and active species are proposed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Concerns over dwindling oil reserves, carbon dioxide emissions from fossil fuel sources and associated climate change is driving the urgent need for clean, renewable energy supplies. The conversion of triglycerides to biodiesel via catalytic transesterification remains an energetically efficient and attractive means to generate transportation fuel1. However, current biodiesel manufacturing routes employing soluble alkali based catalysts are very energy inefficient producing copious amounts of contaminated water waste during fuel purification. Technical advances in catalyst and reactor design and introduction of non-food based feedstocks are thus required to ensure that biodiesel remains a key player in the renewable energy sector for the 21st century. This presentation will give an overview of some recent developments in the design of solid acid and base catalysts for biodiesel synthesis. A particular focus will be on the benefits of designing materials with interconnected hierarchical macro-mesoporous networks to enhance mass-transport of viscous plant oils during reaction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Energy storage technologies are crucial for efficient utilization of electricity. Supercapacitors and rechargeable batteries are of currently available energy storage systems. Transition metal oxides, hydroxides, and phosphates are the most intensely investigated electrode materials for supercapacitors and rechargeable batteries due to their high theoretical charge storage capacities resulted from reversible electrochemical reactions. Their insulating nature, however, causes sluggish electron transport kinetics within these electrode materials, hindering them from reaching the theoretical maximum. The conductivity of these transition metal based-electrode materials can be improved through three main approaches; nanostructuring, chemical substitution, and introducing carbon matrices. These approaches often lead to unique electrochemical properties when combined and balanced.

Ethanol-mediated solvothermal synthesis we developed is found to be highly effective for controlling size and morphology of transition metal-based electrode materials for both pseudocapacitors and batteries. The morphology and the degree of crystallinity of nickel hydroxide are systematically changed by adding various amounts glucose to the solvothermal synthesis. Nickel hydroxide produced in this manner exhibited increased pseudocapacitance, which is partially attributed to the increased surface area. Interestingly, this morphology effect on cobalt doped-nickel hydroxide is found to be more effective at low cobalt contents than at high cobalt contents in terms of improving the electrochemical performance.

Moreover, a thin layer of densely packed nickel oxide flakes on carbon paper substrate was successfully prepared via the glucose-assisted solvothermal synthesis, resulting in the improved electrode conductivity. When reduced graphene oxide was used for conductive coating on as-prepared nickel oxide electrode, the electrode conductivity was only slightly improved. This finding reveals that the influence of reduced graphene oxide coating, increasing the electrode conductivity, is not that obvious when the electrode is already highly conductive to begin with.

We were able to successfully control the interlayer spacing and reduce the particle size of layered titanium hydrogeno phosphate material using our ethanol-mediated solvothermal reaction. In layered structure, interlayer spacing is the key parameter for fast ion diffusion kinetics. The nanosized layered structure prepared via our method, however, exhibited high sodium-ion storage capacity regardless of the interlayer spacing, implying that interlayer space may not be the primary factor for sodium-ion diffusion in nanostructured materials, where many interstitials are available for sodium-ion diffusion.

Our ethanol-mediated solvothermal reaction was also effective for synthesis of NaTi2(PO4)3 nanoparticles with uniform size and morphology, well connected by a carbon nanotube network. This composite electrode exhibited high capacity, which is comparable to that in aqueous electrolyte, probably due to the uniform morphology and size where the preferable surface for sodium-ion diffusion is always available in all individual particles.

Fundamental understandings of the relationship between electrode microstructures and electrochemical properties discussed in this dissertation will be important to design high performance energy storage system applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The rapid development of nanotechnology and wider applications of engineered nanomaterials (ENMs) in the last few decades have generated concerns regarding their environmental and health risks. After release into the environment, ENMs undergo aggregation, transformation, and, for metal-based nanomaterials, dissolution processes, which together determine their fate, bioavailability and toxicity to living organisms in the ecosystems. The rates of these processes are dependent on nanomaterial characteristics as well as complex environmental factors, including natural organic matter (NOM). As a ubiquitous component of aquatic systems, NOM plays a key role in the aggregation, dissolution and transformation of metal-based nanomaterials and colloids in aquatic environments.

The goal of this dissertation work is to investigate how NOM fractions with different chemical and molecular properties affect the dissolution kinetics of metal oxide ENMs, such as zinc oxide (ZnO) and copper oxide (CuO) nanoparticles (NPs), and consequently their bioavailability to aquatic vertebrate, with Gulf killifish (Fundulus grandis) embryos as model organisms.

ZnO NPs are known to dissolve at relatively fast rates, and the rate of dissolution is influenced by water chemistry, including the presence of Zn-chelating ligands. A challenge, however, remains in quantifying the dissolution of ZnO NPs, particularly for time scales that are short enough to determine rates. This dissertation assessed the application of anodic stripping voltammetry (ASV) with a hanging mercury drop electrode to directly measure the concentration of dissolved Zn in ZnO NP suspensions, without separation of the ZnO NPs from the aqueous phase. Dissolved zinc concentration measured by ASV ([Zn]ASV) was compared with that measured by inductively coupled plasma mass spectrometry (ICP-MS) after ultracentrifugation ([Zn]ICP-MS), for four types of ZnO NPs with different coatings and primary particle diameters. For small ZnO NPs (4-5 nm), [Zn]ASV was 20% higher than [Zn]ICP-MS, suggesting that these small NPs contributed to the voltammetric measurement. For larger ZnO NPs (approximately 20 nm), [Zn]ASV was (79±19)% of [Zn]ICP-MS, despite the high concentrations of ZnO NPs in suspension, suggesting that ASV can be used to accurately measure the dissolution kinetics of ZnO NPs of this primary particle size.

Using the ASV technique to directly measure dissolved zinc concentration, we examined the effects of 16 different NOM isolates on the dissolution kinetics of ZnO NPs in buffered potassium chloride solution. The observed dissolution rate constants (kobs) and dissolved zinc concentrations at equilibrium increased linearly with NOM concentration (from 0 to 40 mg-C L-1) for Suwannee River humic acid (SRHA), Suwannee River fulvic acid and Pony Lake fulvic acid. When dissolution rates were compared for the 16 NOM isolates, kobs was positively correlated with certain properties of NOM, including specific ultraviolet absorbance (SUVA), aromatic and carbonyl carbon contents, and molecular weight. Dissolution rate constants were negatively correlated to hydrogen/carbon ratio and aliphatic carbon content. The observed correlations indicate that aromatic carbon content is a key factor in determining the rate of NOM-promoted dissolution of ZnO NPs. NOM isolates with higher SUVA were also more effective at enhancing the colloidal stability of the NPs; however, the NOM-promoted dissolution was likely due to enhanced interactions between surface metal ions and NOM rather than smaller aggregate size.

Based on the above results, we designed experiments to quantitatively link the dissolution kinetics and bioavailability of CuO NPs to Gulf killifish embryos under the influence of NOM. The CuO NPs dissolved to varying degrees and at different rates in diluted 5‰ artificial seawater buffered to different pH (6.3-7.5), with or without selected NOM isolates at various concentrations (0.1-10 mg-C L-1). NOM isolates with higher SUVA and aromatic carbon content (such as SRHA) were more effective at promoting the dissolution of CuO NPs, as with ZnO NPs, especially at higher NOM concentrations. On the other hand, the presence of NOM decreased the bioavailability of dissolved Cu ions, with the uptake rate constant negatively correlated to dissolved organic carbon concentration ([DOC]) multiplied by SUVA, a combined parameter indicative of aromatic carbon concentration in the media. When the embryos were exposed to CuO NP suspension, changes in their Cu content were due to the uptake of both dissolved Cu ions and nanoparticulate CuO. The uptake rate constant of nanoparticulate CuO was also negatively correlated to [DOC]×SUVA, in a fashion roughly proportional to changes in dissolved Cu uptake rate constant. Thus, the ratio of uptake rate constants from dissolved Cu and nanoparticulate CuO (ranging from 12 to 22, on average 17±4) were insensitive to NOM type or concentration. Instead, the relative contributions of these two Cu forms were largely determined by the percentage of CuO NP that was dissolved.

Overall, this dissertation elucidated the important role that dissolved NOM plays in affecting the environmental fate and bioavailability of soluble metal-based nanomaterials. This dissertation work identified aromatic carbon content and its indicator SUVA as key NOM properties that influence the dissolution, aggregation and biouptake kinetics of metal oxide NPs and highlighted dissolution rate as a useful functional assay for assessing the relative contributions of dissolved and nanoparticulate forms to metal bioavailability. Findings of this dissertation work will be helpful for predicting the environmental risks of engineered nanomaterials.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis describes the preparation of polymersomes from poly(ethylene glycol)-block-polycarbonate (PEG-PC) copolymers functionalized with pendant coumarin groups. Coumarin groups undergo photo-reversible dimerization when irradiated with specific ultraviolet wavelengths, so they can be used to prepare polymers with photo-responsive properties. In this case, the pendant coumarin groups enable stabilization of the polymersome membrane through photo-crosslinking of the hydrophobic block. Initially, several novel cinnamoyl and coumarin functionalized cyclic carbonate monomers were synthesized using ester, ether, or amide linkages. While the homopolymerization of these functionalized monomers proved challenging due to their high melting points, both cinnamoyl and coumarin functionalized monomers were successfully copolymerized with trimethylene carbonate (TMC) at 100 ℃ using a catalyst-free melt polymerization process where the TMC doubled as a solvent for the higher melting point monomer. Using this system, polycarbonate copolymers with up to 33% incorporation of the functionalized monomers were prepared. In addition, an investigation of some anomalous polymerization results identified previously unreported triethylamine-based catalysts for the melt polymerization of carbonate monomers. These studies also demonstrated that the catalyst-free polymerization of TMC occurs faster and at lower temperatures than previously reported. Subsequently, the photo-crosslinking of cinnamoyl and coumarin functionalized polycarbonates was compared and coumarin was identified as the more effective crosslinking agent when using 300-400 nm UV. An investigation of the photo-reversibility of the coumarin dimerization revealed no discernible change in the properties of crosslinked networks, but rapid photo-reversion in dilute solutions. The photo-crosslinking and photo-reversion kinetics of the coumarin functionalized polycarbonates were determined to be second-order in both cases. Finally, the self-assembly of PEG-PC diblock copolymers functionalized with coumarin was examined and both reverse solvent evaporation and solvent displacement were found to induce self-assembly, with hydrophilic mass fractions (f-factors) of 12-28% resulting in the formation of solid microparticles and nanoparticles and f-factors of 33-43% resulting in the formation of polymersomes. The stabilization of these polymersome membranes through photo-initiator-free photo-crosslinking was demonstrated with the crosslinking allowing polymersomes to withstand centrifugation at 12,000 x g. In addition, the encapsulation of calcein, as a model small molecule drug, in the stabilized polymersomes was successfully demonstrated using confocal microscopy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The hydrogenation of biomass-derived molecules is a key reaction in upgrading these compounds into chemicals and fuels. The use of catalytic transfer hydrogenation, employing alcohols as hydrogen sources, offers an alternative approach to this process, avoiding the use of H2 under high pressure and precious metal catalysts. In this work, the gas-phase conversion of biomass-derived furfural into furfuryl alcohol and 2-methylfuran was studied, using methanol as the H-transfer agent and CaO-based catalysts. The results obtained with this catalyst were compared with those obtained by using MgO, which due to its basic properties and to its high surface area, at present appears to be among the best basic catalysts used for the conversion of biomass-derived molecules. Pure CaO, despite having a very low surface area, compared to MgO catalyst (5 m2/g vs. 172 m2/g), was shown to reduce furfural into its corresponding unsaturated alcohol at 350°C, thus allowing selective H-transfer from methanol to the substrate. These results highlight the potential application of the H-transfer reaction over CaO based catalysts as an efficient process for the selective reduction of biomass-derived molecules.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nickel-based catalysts supported on alumina have been widely used in various reactions to obtain synthesis gas or hydrogen. Usually, higher conversion levels are obtained by these catalysts, however, the deactivation by coke formation and sintering of metal particles are still problems to be solved. Several approaches have been employed in order to minimize these problems, among which stands out in recent years the use of additives such as oxides of alkali metals and rare earths. Similarly, the use of methodologies for the synthesis faster, easier, applicable on an industrial scale and to allow control of the microstructural characteristics of these catalysts, can together provide the solution to this problem. In this work, oxides with spinel type structure AB2O4, where A represents divalent cation and B represents trivalent cations are an important class of ceramic materials investigated worldwide in different fields of applications. The nickel cobaltite (NiCo2O4) was oxides of spinel type which has attracted considerable interest due to its applicability in several areas, such as chemical sensors, flat panel displays, optical limiters, electrode materials, pigments, electrocatalysis, electronic ceramics, among others. The catalyst precursor NiCo2O4 was prepared by a new chemical synthesis route using gelatine as directing agent. The polymer resin obtained was calcined at 350°C. The samples were calcined at different temperatures (550, 750 and 950°C) and characterized by X ray diffraction, measurements of specific surface area, temperature programmed reduction and scanning electron microscopy. The materials heat treated at 550 and 750°C were tested in the partial oxidation of methane. The set of techniques revealed, for solid preparations, the presence of the phase of spinel-type structure with the NiCo2O4 NixCo1-xO solid solution. This solid solution was identified by Rietveld refinement at all temperatures of heat treatment. The catalyst precursors calcined at 550 and 750°C showed conversion levels around 25 and 75%, respectively. The reason H2/CO was around 2 to the precursor treated at 750°C, proposed reason for the reaction of partial oxidation of methane, one can conclude that this material can be shown to produce synthesis gas suitable for use in the synthesis Fischer-Tropsch process

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Copper-based catalysts supported on niobium-doped ceria have been prepared and tested in the preferential oxidation of CO in excess of H2 (PROX) and in total oxidation of toluene. Supports and catalysts have been characterized by several techniques: N2 adsorption, ICP-OES, XRF, XRD, Raman Spectroscopy, SEM, TEM, H2-TPR and XPS, and their catalytic performance has been measured in PROX, with an ideal gas mixture (CO, O2 and H2) with or without CO2 and H2O, and in total oxidation of toluene. The effects of the copper loading and the amount of niobium in the supports have been evaluated. Remarkably, the addition of niobia to the catalysts may improve the catalytic performance in total oxidation of toluene. It allows us to prepare cheaper catalysts (niobia it is far cheaper than ceria) with improved catalytic performance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ceria is an important component of catalysts for oxidation reactions that proceed through the Mars-van Krevelen mechanism, promoting activity. A paradigm example of this is the VOx–CeO2 system for oxidative dehydrogenation reactions, where vanadium oxide species are supported on ceria and a special synergy between them is behind the enhanced activity: reduction of the catalyst is promoted by ceria undergoing reduction. This leads to favourable oxygen vacancy formation and hydrogen adsorption energies—useful descriptors for the oxidation activity of VOx–CeO2 catalysts. In this paper, we examine if this promoting effect on ceria-based catalysts holds for other metal oxide modifiers and we investigate MnOn– and CrOn–CeO2(111) (n = 0 − 4) as examples. We show, combining density functional theory calculations and statistical thermodynamics that similarly to the vanadia modifier, the stable species in each case is MnO2– and CrO2–CeO2. Both show favourable energetics for oxygen vacancy formation and hydrogen adsorption, indicating that VO2–CeO2 is not the only system of this type that can have an enhanced activity for oxidation reactions. However, the mechanism involved in each case is different: CrO2–CeO2 shows similar properties to VO2–CeO2 with ceria reduction upon oxygen removal stabilising the 5+ oxidation state of Cr. In contrast, with MnO2–CeO2, Mn is preferentially reduced. Finally, a model system of VO2–Mg:CeO2 is explored that shows a synergy between VO2 modification and Mg doping. These results shed light on the factors involved in active oxidation catalysts based on supported metal oxides on ceria that should be taken into consideration in a rational design of such catalysts.