972 resultados para Metal structures
Resumo:
The present paper deals with the study of microstructure and wear characteristics of TiB2 reinforced aluminium metal matrix composites (MMCs). Matrix alloys with 5, 10 and 15% of TiB2 were made using stir casting technique. Effect of sliding velocity on the wear behaviour and tribo-chemistry of the worn surfaces of both matrix and composites sliding against a EN24 steel disc has been investigated under dry conditions. A pin-on-disc wear testing machine was used to find the wear rate, in which EN24 steel disc was used as the counter face, loads of 10-60N in steps of 10N and speeds of 100, 200, 300, 400 and 500 rpm were employed. The results showed that the wear rate was increased with an increase in load and sliding speed for both the materials. However, a lower wear rate was obtained for MMCs when compared to the matrix alloys. The wear transition from slight to severe was presented at the critical applied loads. The transition loads for the MMCs were much higher than that of the matrix alloy. The transition loads were increased with increase in TiB2 and the same was decreased with the increase of sliding speeds. The SEM and EDS analyses were undertaken to demonstrate the effect of TiB2 particles on the wear mechanism for each conditions.
Resumo:
The reaction of the amino spirocyclic cyclotriphosphazene N3P3(NMe2)4(NHCH2CH2CH2NH) (2) with palladium chloride gives the stable chelate complex [PdCl2.2] (4). An X-ray crystallographic study reveals that one of the nitrogen atoms of the diaminoalkane moiety and an adjacent phosphazene ring nitrogen atom are bonded to the metal. An analogous reaction with the phosphazene N3P3(NMe2)4(NHCH2CH2NH) (1) gives initially a similar complex which undergoes facile hydrolysis to give the novel monometallic and bimetallic complexes [PdCl2.HN3P3(O)(NMe2)4(NHCH2CH2NH2)] (5) and [PdCl{N3P3(NMe2)4(NCH2CH2NH2)}]2(O) (6), which have been structurally characterized; in the former, an (oxophosphazadienyl)ethylenediamine is chelated to the metal whereas, in the latter, an oxobridged bis(cyclotriphosphazene) acts as a hexadentate nitrogen donor ligand in its dianionic form. Crystal data for 4 : a = 14.137(1) angstrom, b = 8.3332(5) angstrom, c = 19.205(2) angstrom, beta = 96.108(7)degrees, P2(1)/c, Z = 4, R = 0.027 with 3090 reflections (F > 5sigma(F)). Crystal data for 5 : a = 8.368(2) angstrom, b = 16.841(4) A, c = 16.092(5) angstrom, beta = 98.31(2)degrees, P2(1)/n, Z = 4, R = 0.049 with 3519 reflections (F > 5sigma(F)). Crystal data for 6 : a = 22.455(6) angstrom, b = 14.882(3) angstrom, c = 13.026(5) angstrom, 6 = 98.55(2)degrees, C2/c, Z = 4, R = 0.038 with 3023 reflections (F > 5sigma(F)).
Resumo:
Reactions of the bis(3,5-dimethylpyrazol-1-yl)cyclotriphosphazenes gem-N3P3Ph4(C3HN2Me2)2 (L1) and N3P3(MeNCH2CH2O)2(C3HN2Me2)2 (L2) with [M(CO)6] (M = Mo or W) afford complexes of the type [M(CO)3L] (L = L1 or L2), which have been characterised by IR and NMR spectroscopic data. The structures of [Mo(CO)3L1], [W(CO)3L2] and the ligand L2 have been determined by single-crystal X-ray diffraction. The phosphazenes act as novel tridentate NNN-donor ligands with two pyrazolyl nitrogen atoms and one phosphazene ring nitrogen atom bonded to the metal atom
Resumo:
The electronic structures of a wide range of early transition-metal (TM) compounds, including Ti and V oxides with metal valences ranging from 2+ to 5+ and formal d-electron numbers ranging from 0 to 2, have been investigated by a configuration-interaction cluster model analysis of the core-level metal 2p x-ray photoemission spectra (XPS). Inelastic energy-loss backgrounds calculated from experimentally measured electron-energy-loss spectra (EELS) were subtracted from the XPS spectra to remove extrinsic loss features. Parameter values deduced for the charge-transfer energy Delta and the d-d Coulomb repulsion energy U are shown to continue the systematic trends established previously for the late TM compounds, giving support to a charge-transfer mechanism for the satellite structures. The early TM compounds are characterized by a large metal d-ligand p hybridization energy, resulting in strong covalency in these compounds. Values for Delta and U suggest that many early TM compounds should be reclassified as intermediate between the charge-transfer regime and the Mott-Hubbard regime.
Resumo:
Diastereomers (SRu,Sc)-1a and (RRu,Sc)-1b, in a ratio of 85: 15 and formulated as [Ru(η-MeC6H4Pri-p)Cl(L*)], have been prepared by treating [{Ru(η-MeC6H4Pri-p)Cl2}2] with the sodium salt of (S)-α-methylbenzylsalicylaldimine (HL*) in tetrahydrofuran at –70 °C. The reaction of 1(1a+1b) with AgClO4 in acetone followed by an addition of PPh3 or 4-methylpyridine (4Me-py) leads to the formation of adducts [Ru(η-MeC6H4Pri-p)(PPh3)(L*)]ClO42[(SRu,Sc)2a, (FRu,Sc)2b] and [Ru(η-MeC6H4Pri-p)(4Me-py)(L*)]ClO43[(SRu,Sc)3a, (RRu,Sc)3b] in the diastereomeric ratios (SRu,Sc) : (RRu,Sc) of 2 : 98 and 76 : 24, respectively. Complex 1 crystallises with equal numbers of 1a and 1b molecules in an asymmetric unit of monoclinic space group P21 with a= 10.854(1), b= 17.090(1), c= 12.808(4)Å, β= 110.51(1)°, and Z= 4. The structure was refined to R= 0.0552 and R′= 0.0530 with 2893 reflections having I[gt-or-equal] 1.5σ(I). The absolute configurations of the chiral centres in the optically pure single crystal of the PPh3 adduct have been obtained from an X-ray study. Crystals of formulation [Ru(η-MeC6H4Pri-p)-(PPh3)(L*)]2[ClO4][PF6]·1.5 CHCl3, obtained in presence of both ClO4 and PF6 anions, belong to the non-centric triclinic space group P1 with a= 10.852(2), b= 14.028(1), c= 15.950(2)Å, α= 91.51(1), β= 105.97(1), γ= 106.11(1)°, and Z= 2. The final residuals were R= 0.0713, R′= 0.0752 with 7283 reflections having I[gt-or-equal] 2.5σ(I). The crystal structures of 1a,1b, and the PPh3 adduct (2b,2b′) consist of a ruthenium(II) centre bonded to a η-p-cymene, a bidentate chelating Schiff base, and a unidentate ligand (Cl or PPh3). The chirooptical properties of the complexes have been studied using 1H NMR and CD spectral data. The presence of a low-energy barrier for the intermediate involved in these reactions, showing both retention as well as inversion of the metal configuration, is discussed.
Resumo:
Deintercalation of amines from the layered amine adducts of WO3, MoO3 and W1-xMoxO3 has been employed as a soft chemical route to produce unusual metastable structures of the oxides. After the adducts of WO3, MoO3 and W1-xMoxO3 (x = 0.25, 0.5, 0.75) with amines such as triethylamine (TEA), pyridine, n-butylamine and n-octylamine had been characterized, deintercalation was carried out thermally as well as by acid leaching. Thermal deintercalation yielded novel metastable structures of WO3 and MoO3 that were significantly different from the stable forms, which contain distorted metal-oxygen octahedra. Thus, ReO3-type cubic WO3 was obtained by the thermal deintercalation of WO3 . 0.5 TEA. Acid leaching of the amines gave metastable phases of WO3, MoO3 and W1-xMoxO3, which were different from those obtained thermally. All the metastable phases transformed to the corresponding stable forms at higher temperatures.
Resumo:
Five coordination compounds Zn(mbmpbi)(2)Cl-2 (1), Zn(mbmpbi)(2)Br-2 (2), Cd(mbmpbi)(2)Cl-2 (3), Hg(mbmpbi)(2)Cl-2 (4) and Hg(mbmpbi)(2)Br-2 (5) were synthesized by the reaction of 1-(p-methoxybenzyl)-2-(p-methoxyphenyl)benzimidazole (mbmpbi) with the corresponding metal halides. The complexes have been characterized by elemental analysis, conductance measurements, FT-IR, H-1 NMR and photoluminescence spectral studies. The ligand mbmpbi exhibits the N-benzimidazole coordination. The structures of 3-5 have been determined by single crystal X-ray diffraction. These three complexes are isostructural, crystallizing in the monoclinic system. P2/n space group with a distorted tetrahedral geometry around the metal ion. Zn(II) and Cd(II) complexes show strong blue emission in solid state at room temperature. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The electronic structures of pyrite-type transition-metal chalcogenides MS2-xSex (M = Fe, Co, Ni) has been investigated by photoemission and inverse-photoemission spectroscopy. The valence-band spectrum of ferromagnetic CoS2 does not show exchange splitting of the Co 3d peak, in disagreement with band-structure calculations. High-resolution photoemission spectra of NiS1.55Se0.45 shows spectral weight transfer from low (similar or equal to 50 meV) to high (0.2-0.5 eV) binding energies, in going from the metallic to the insulating phase.
Resumo:
Copper(I)-dppm complexes encapsulating the oxyanions ClO4-, NO3-, CH3C6H4CO2-, SO42-, and WO42- have been synthesized either by reduction of the corresponding Cu(II) salts and treatment with dppm, or by treating the complex [Cu-2(dppm)(2)(dmcn)(3)](BF4)(2) (1) (dmcn = dimethyl cyanamide) with the respective anion. The isolated complexes [Cu-2(dppm)(2)(dmcn)(2)(ClO4)] (ClO4) (2), [Cu-2(dppm)(2)(dmcn)(2)(NO3)] (NO3) (3), Cu-2(dppm)(2)(NO3)(2) (4), [Cu-2(dppm)(2)(CH3C6H4CO2)(2)]dmcn.2THF (5), Cu-2(dppm)(2)(SO4) (6), and [Cu-3(dppm)(3)(Cl)(WO4)] 0.5H(2)O (7) have been characterized by IR, H-1 and P-31{H-1} NMR, UV-vis, and emission spectroscopy. The solid-state molecular structure of complexes 1, 2, 4, and 7 were determined by single-crystal X-ray diffraction. Pertinent crystal data are as follows: for 1, monoclinic P2(1)/c, a = 11.376(10) Angstrom, b = 42.503(7) Angstrom, c = 13.530(6) Angstrom, beta = 108.08(2)degrees, V = 6219(3) Angstrom(3), Z = 4; for 2, monoclinic P2(1)/c, a = 21.600(3) Angstrom, b = 12.968(3) Angstrom, c = 23.050(3) Angstrom, beta = 115.97(2)degrees, V = 5804(17) Angstrom(3), Z = 4; for 4, triclinic
, a = 10.560(4) Angstrom, b = 10.553(3) Angstrom, c = 22.698(3) Angstrom, alpha = 96.08(2)degrees, beta = 96.03(2)degrees, gamma = 108.31(2)degrees, V = 2362(12) Angstrom(3), Z = 2; and for 7, orthorhombic P2(1)2(1)2(1), a = 14.407(4) Angstrom, b = 20.573(7) Angstrom, c = 24.176(6) Angstrom, V = 7166(4) Angstrom(3), Z = 4. Analyses of the crystallographic and spectroscopic data of these complexes reveal the nature of interactions between the Cu-I-dppm core and oxyanion. The anchoring of the oxyanion to the Cu-n(dppm)(n) unit is primarily through coordination to the metal, but the noncovalent C-H ... O interactions between the methylene and phenyl protons of the dppm and oxygen atoms of the oxyanion play a significant role. The solid-state emission spectra for complexes 1-6 are very similar but different from 7. In CDCl3 solution, addition of ClO4- or NO3- (as their tetrabutylammonium salts) to 1 establishes a rapid equilibrium between the anion-complexed and uncomplexed forms. The association constant values for ClO4- and NO3- have been estimated from the P-31{H-1} NMR spectra.
Resumo:
Two new cadmium coordination polymers namely Cd(HAmTrz-COO)(4)(NH4+)(2)] 1; and Cd(HAmTrz)(2)I-2](n) 2; (HAmTrz-COOH = 3-amino-1,2,4-triazole-5-carboxylic acid), have been prepared based on HAmTrz-COOH as ligand. The crystal structures of 1 and 2 have been determined by single-crystal X-ray diffraction technique. In coordination-complex 1 four triazole ligands coordinate via N1 nitrogen leading to a tetrahedral geometry around cadmium ion, while in 2 the ligand prefers to coordinate to the metal in a bidentate bridging mode. The structures of both the coordination polymers can be envisaged as 3D hydrogen bonded networks. Thermogravimetric analysis shows that 2 is more stable than 1 owing to different coordination numbers of cadmium atoms. Photoluminescence properties of both the compounds have been investigated in the solid state. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We have performed density functional calculations on tetragonal SnO and PbO (litharge) in the space group P4/nmm with the specific intention of examining the role played by Sn 5s and Pb 6s lone pairs in stabilizing the structure, and in giving rise to semi-metallic behavior (of SnO at ambient pressure and of PbO in the gamma phase). Use of the electron localization function has permitted real-space visualization of the lone pair in these structures. We also discuss the electronic structure of the orthorhombic PbO (massicot, space group Pbma) which again has localized lone pairs, contrary to some earlier expectation. (C) 2002 Editions scientifiques et medicales Elsevier SAS. All rights reserved.
Resumo:
Encapsulated and hollow closed-cage onion-like structures of WS2 and MoS2 were prepared by laser ablation of the corresponding layered structures in argon atmosphere at four varied temperatures. A detailed study for WS2 indicates that only metal-filled onion-like structures are produced at temperatures Tless-than-or-equals, slant650°C, whereas a mixture of metal-filled and hollow structures are produced at Tgreater-or-equal, slanted850°C. The encapsulated metal is identified to be predominantly the metastable β phase of tungsten. Very short tube-like or elongated polyhedral structures are also obtained at high temperatures.
Resumo:
Metal stencils are well known in electronics printing application such as for dispensing solder paste for surface mounting, printing embedded passive elements in multilayer structures, etc. For microprinting applications using stencils, the print quality depends on the smoothness of the stencil aperture and its dimensional accuracy, which in turn are invariably related to the method used to manufacture the stencils. In this paper, fabrication of metal stencils using a photo-defined electrically assisted etching method is described. Apertures in the stencil were made in neutral electrolyte using three different types of impressed current, namely, dc, pulsed dc, and periodic pulse reverse (PPR). Dimensional accuracy and wall smoothness of the etched apertures in each of the current waveforms were compared. Finally, paste transfer efficiency of the stencil obtained using PPR was calculated and compared with those of a laser-cut electropolished stencil. It is observed that the stencil fabricated using current in PPR waveform has better dimensional accuracy and aperture wall smoothness than those obtained with dc and pulsed dc. From the paste transfer efficiency experiment, it is concluded that photo-defined electrically assisted etching method can provide an alternate route for fabrication of metal stencils for future microelectronics printing applications.
Resumo:
Four new neutral copper-azido polymers [Cu(4)(N(3))(8)(Me-hmpz)(2)](n) (1), [Cu(4)(N(3))(8)(men)(2)](n) (2), [Cu(5)(N(3))(10)(N,N-dmen)(2)](n) (3) and [Cu(5)(N(3))(10)(N,N'-dmen)(5)](n) (4) [Me-hmpz = 1-methylhomopiperazine; men = N-methylethylenediamine; N, N-dmen = N, N-dimethylethylenediamine and N, N'-dmen = N, N'-dimethylethylenediamine] have been synthesized by using various molar equivalents of the chelating diamine ligands with Cu(NO(3))(2)center dot 3H(2)O and an excess of NaN(3). Single-crystal X-ray structures show that the basic asymmetric units of 1 and 2 are very similar, but the overall 1D structures were found to be quite different. Complex 3 with a different composition was found to be 2D in nature, while the 1D complex 4 with 1 : 1 metal to diamine ratio presented several new structural features. Cryomagnetic susceptibility measurements over a wide range of temperature were corroborated with density functional theory calculations (B3LYP functional) performed on the complexes 1-3 to provide a qualitative theoretical interpretation of their overall magnetic behavior.
Resumo:
Two copper-containing compounds [Cu(3)(mu(3)-OH)(2)-(H(2)O)(2){(SO(3))-C(6)H(3)-(COO)(2)}(CH(3)COO)] , I, and [Cu(5)(mu(3)-OH)(2)(H(2)O)(6){(NO(2))-C(6)H(3)-(COO)(2)}(4)]center dot 5H(2)O, II, were prepared using sulphoisophthalic and nitroisophthalic acids. The removal of the coordinated water molecules in the compounds was investigated using in situ single crystal to single crystal (SCSC) transformation studies, temperature-dependent powder X-ray diffraction (PXRD), and thermogravimetric analysis (TGA). The efficacy of SCSC transformation studies were established by the observation of dimensionality cross-over from a two-dimensional (I) to a three-dimensional structure, Cu(6)(mu(3)-OH)(4){(SO(3))-C(6)H(3)-(COO)(2)}(2)(CH(3)COO)(2), Ia, during the removal of the coordinated water molecules. Compound H exhibited a structural reorganization forming Cu(5)(mu(2)-OH)(2){(NO(2))C(6)H(3)-(COO)(2))(4)], Ha, possessing trimeric (Cu(3)O(12)) and dimeric (Cu(2)O(8)) copper clusters. The PXRD studies indicate that the three-dimensional structure (Ia) is transient and unstable, reverting back to the more stable two-dimensional structure (I) on cooling to room temperature. Compound Ha appears to be more stable at room temperature. The rehydration/dehydration studies using a modified TGA setup suggest complete rehydration of the water molecules, indicating that the water molecules in both compounds are labile. A possible model for the observed changes in the structures has been proposed. Magnetic studies indicate changes in the exchanges between the copper centers in Ha, whereas no such behavior was observed in Ia.