1000 resultados para Metais de transição (Química)
Modelagem termodinâmica por extração por solvente de metais divalentes em meio sulfato usando D2EHPA
Resumo:
The extraction of divalent metals (Mn2+, Ni2+, Co2+ and Cu2+) in the system MSO4 - H2SO4 - H2O - D2EHPA in isoparaffin (17/21) was studied by a thermodynamic model based on chemical equilibria with mass and charge balance equations. The activity coefficients of all solutes in the aqueous phase were calculated by Davies equation. By applying this model, the equilibrium concentrations of solutes were calculated from de concentration of divalent metals and pH. The predicted distribution coefficients for the divalents metals were in good agreement with experimental results.
Resumo:
This study investigated the contamination of the Ribeira de Iguape River - RIR by Cd, Zn, Cr and Pb, using the bivalve Anodontites tenebricosus as a biomonitor. Metal concentrations in tissue samples were measured by HR-ICPMS. Bivalve tissues exhibited mean levels of 1.00 µg/g Cd; 152.89 µg/g Zn; 14.79 µg/g Cr and 4.40 µg/g Pb. Lead concentrations were comparable to those reported for moderately contaminated sites. The results showed that Pb is bioavailable to the bivalves, exhibiting high concentrations and exceeding both natural and reference values for human consumption. The freshwater bivalve Anodontites tenebricosus is a suitable biomonitor of contamination by metals.
Resumo:
The DGT technique allows one to measure quantitatively free and labile metal species in aquatic systems. Nevertheless, for this approach, knowledge is required of the diffusion coefficients of the analytes in a diffusive layer. In this study, the diffusion coefficients of Hg(II), As(III), Mn(II), Mg(II), Cu(II), Cd(II) were determined in agarose gel and those of Ba(II), Cd(II), Cu(II), Mg(II), Mn(II) e Zn(II) in cellulose acetate membranes. These materials presented good performance and the reported results can be used as a data base for further DGT studies.
Resumo:
Metals such as copper and zinc are essential for the development and maintenance of numerous enzymatic activities, mitochondrial functions, neurotransmission, and also for memorization and learning. However, disruption in their homeostasis can cause neurodegenerative disorders such as the Alzheimer and Parkinson diseases. In this work, the speciation of copper and zinc in urine samples was carried out. To this end, free and total metal concentrations were determined by square wave anodic stripping voltammetry using a glassy carbon electrode coated with bismuth film. The digestion of the samples was performed in a microwave with the addition of oxidant reagents.
Resumo:
Emission factors of natural processes and anthropogenic activities were used to estimate nutrients and metal loads for the lower Macaé river basin, which hosts the operational base for the offshore oil and gas exploration in the Campos Basin. The estimates indicated that emissions from anthropogenic activities are higher than natural emissions. Major contributing drivers include husbandry and urbanization, whose effluents receive no treatment. The increasing offshore oil exploration along the Brazilian littoral has resulted in rapid urbanization and, therefore might increase the inshore emission of anthropogenic chemicals in cases where effective residue control measures are not implemented in fluvial basins of the region.
Resumo:
This study aims to evaluate the bioaccumulation of macronutrients and heavy metals in the golden mussel according to its collection site and seasonality in the aquaculture area of the reservoir from April/2009 to March/2010. There is no difference (p > 0.05) in the concentration of metals with respect to the point of collection. The concentrations of Cu, Fe, Mn, Zn, Cd and Pb were higher (p < 0.05) in spring and summer than in fall and winter. Values of the heavy-metal pollution index (MPI) for collection point and seasonality indicate environmental contamination in the aquaculture area.
Resumo:
Titanium dioxide nanostructured catalysts (nanotubes) doped with different metals (silver, gold, copper, palladium and zinc) were synthesized by the hydrothermal method in order to promote an increase in their photocatalytic activity under visible light. The catalysts were characterized by X-ray diffraction, diffuse reflectance spectroscopy, transmission electron microscopy and specific area and pore volume determination. The materials' photocatalytic activity was evaluated by rhodamine B decomposition in a glass batch reactor. Under UV radiation, only nanotubes doped with palladium were more active than the TiO2 P25, but the samples doped with silver, palladium and gold exhibited better results than the undoped samples under visible light.
Resumo:
In this work we report a systematic study on the influence of the chemical nature of silver precursors on the formation of glass-ceramics from oxide glasses. Thermal, structural and optical properties were analyzed as a function of the glass composition. Controlled crystallization was achieved by thermal treatment of the samples above glass transition. The influence of time of treatment on both nanoparticle growth and optical properties of the samples was studied by transmission electron microscopy and UV-Vis spectroscopy, respectively. Results showed that only glasses containing AgCl and AgNO3 led to glass-ceramics growth after thermal treatment.
Resumo:
A hydrometallurgical method for the recovery of rare earth metals, cobalt, nickel, iron, and manganese from the negative electrodes of spent Ni - MH mobile phone batteries was developed. The rare earth compounds were obtained by chemical precipitation at pH 1.5, with sodium cerium sulfate (NaCe(SO4)2.H2O) and lanthanum sulfate (La2(SO4)3.H2O) as the major recovered components. Iron was recovered as Fe(OH)3 and FeO. Manganese was obtained as Mn3O4.The recovered Ni(OH)2 and Co(OH)2 were subsequently used to synthesize LiCoO2, LiNiO2 and CoO, for use as cathodes in ion-Li batteries. The anodes and recycled materials were characterized by analytical techniques.
Resumo:
In rivers, sediments act as sinks for retaining contaminants. This study evaluated the influence of sediment humic substances (HS) on the bioavailability of metals. The levels of metals in sediments and HS indicated that most are complexed with HS. Characterization of HS showed a high degree of humification. The complexation capacity of HS for metals established the affinity order:Pb2+
Resumo:
This paper describes the evaluation of simple and fast solubilization methods for the determination of Ca, Mg, and K in glycerin samples from biodiesel production by atomic spectrometry. The solubilization in water was compared with two other methods: solubilization in formic acid and solubilization in ethanol. Using solubilization in water, determination of the three analytes was possible; the values of limits of detection for Ca, K, Mg were 0.31, 0.06, and 0.16 mg kg−1, respectively. Because no adequate reference material was available, the accuracy was evaluated by assessing the recoveries tests with both solubilization methods; the evaluation ranged from 90% to 115%, with values of relative standard deviation >8%, indicating good accuracy of the measure. Four crude glycerin samples obtained from biodiesel plants of Rio Grande do Sul were analyzed after treatment with the different methods of solubilization, and the obtained results of Ca, Mg, and K concentration were in agreement with the values obtained from both solubilization methods. Therefore, solubilization in water is concluded to be a simpler, faster, and viable method for sample preparation of glycerin.
Resumo:
AbstractThe purpose of this study was to evaluate the best operating conditions of ICP OES for the determination of Na, Ca, Mg, Sr and Fe in aqueous extract of crude oil obtained after hot extraction with organic solvents (ASTM D 6470-99 modified). Thus, the full factorial design and central composite design were used to optimize the best conditions for the flow of nebulization gas, the flow of auxiliary gas, and radio frequency power. After optimization of variables, a study to obtain correct classification of the 18 samples of aqueous extract of crude oils (E1 to E18) from three production and refining fields was carried out. Exploratory analysis of these extracts was performed by principal component analysis (PCA), hierarchical cluster analysis (HCA) and linear discriminant analysis (LDA), using the original variables as the concentration of the metals Na, Ca, Mg, Sr and Fe determined by ICP OES.
Resumo:
Bioaccumulation of Ag, Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn was determined in the gills and liver of Cyprinus carpio and related to concentrations in the sediment and water of the Alagados Reservoir, Ponta Grossa/Paraná. Cd and Fe exceeded the legal limit for water. Fe was the most abundant metal in the reservoir's water and sediment. The metals in the sediment were below the level of probable adverse effects on biota. There were no significant differences between sampling sites for water and sediment. Liver and gills had higher concentrations of Al, Fe and Zn, with a significant increase in Al (P > 0.05) compared to the increase in weight and size of the specimens. Statistically, gills showed higher concentrations of Al, Cd, Co, Cr, Mn and Zn and liver higher concentrations of Cu and Fe. Co, Cu, Fe, Mn and Zn showed significant differences (P < 0.01) between the organs. The bioaccumulation factors (BAF) showed that the interaction of water with gills promotes greater accumulation of metals in this organ. Despite the low concentrations in the reservoir, bioaccumulation of metals in gills and liver of C. carpio occurs by its interaction with contaminated water and sediment, respectively.
Resumo:
Optimization of the main parameters of SWASV using boron-doped diamond electrode was described for the simultaneous determination of Zn, Cd, Pb and Cu free in coconut water. The values of electroanalytical parameters studied were optimized with the factorial design and center composite design. The optimized parameters for the preconcentration of metals were -1.50 V for potential, and 240 s for deposition time. For SWV, the optimized value was 11.56 mV for step potential. In addition, frequency and pulse height were defined at 100 Hz and 55 mV, respectively. Furthermore, the concentration of the supporting electrolyte (acetate buffer, pH 4.7) was optimized in 0.206 mol L-1. The optimized procedure was applied in two samples of coconut water: natural and processed. The limits of detection (LOD) obtained for Zn, Cd, Pb and Cu were 7.2; 4.4; 3.3 and 1.5 µg L-1, respectively. The concentrations of Cd and Pb were not detected. On the other hand, the values found for the concentrations of Zn and Cu were: < LOD (29 µg L-1) and (6.8 ± 0.9) µg L-1 for the natural sample; and (85.8 ± 4.2) µg L-1 and (7.7 ± 0.6) µg L-1 for the processed sample, respectively.