999 resultados para Messinian Erosional Surface
Resumo:
The first representative chemical, structural, and morphological analysis of the solid particles from a single collection surface has been performed. This collection surface sampled the stratosphere between 17 and 19km in altitude in the summer of 1981, and therefore before the 1982 eruptions of El Chichón. A particle collection surface was washed free of all particles with rinses of Freon and hexane, and the resulting wash was directed through a series of vertically stacked Nucleopore filters. The size cutoff for the solid particle collection process in the stratosphere is found to be considerably less than 1 μm. The total stratospheric number density of solid particles larger than 1μm in diameter at the collection time is calculated to be about 2.7×10−1 particles per cubic meter, of which approximately 95% are smaller than 5μm in diameter. Previous classification schemes are expanded to explicitly recognize low atomic number material. With the single exception of the calcium-aluminum-silicate (CAS) spheres all solid particle types show a logarithmic increase in number concentration with decreasing diameter. The aluminum-rich particles are unique in showing bimodal size distributions. In addition, spheres constitute only a minor fraction of the aluminum-rich material. About 2/3 of the particles examined were found to be shards of rhyolitic glass. This abundant volcanic material could not be correlated with any eruption plume known to have vented directly to the stratosphere. The micrometeorite number density calculated from this data set is 5×10−2 micrometeorites per cubic meter of air, an order of magnitude greater than the best previous estimate. At the collection altitude, the maximum collision frequency of solid particles >5μm in average diameter is calculated to be 6.91×10−16 collisions per second, which indicates negligible contamination of extraterrestrial particles in the stratosphere by solid anthropogenic particles.
Resumo:
We present experimental results that demonstrate that the wavelength of the fundamental localised surface plasmon resonance for spherical gold nanoparticles on glass can be predicted using a simple, one line analytical formula derived from the electrostatic eigenmode method. This allows the role of the substrate in lifting mode degeneracies to be determined, and the role of local environment refractive indices on the plasmon resonance to be investigated. The effect of adding silica to the casting solution in minimizing nanopaticle agglomeration is also discussed.
Resumo:
The steady problem of free surface flow due to a submerged line source is revisited for the case in which the fluid depth is finite and there is a stagnation point on the free surface directly above the source. Both the strength of the source and the fluid speed in the far field are measured by a dimensionless parameter, the Froude number. By applying techniques in exponential asymptotics, it is shown that there is a train of periodic waves on the surface of the fluid with an amplitude which is exponentially small in the limit that the Froude number vanishes. This study clarifies that periodic waves do form for flows due to a source, contrary to a suggestion by Chapman & Vanden-Broeck (2006, J. Fluid Mech., 567, 299--326). The exponentially small nature of the waves means they appear beyond all orders of the original power series expansion; this result explains why attempts at describing these flows using a finite number of terms in an algebraic power series incorrectly predict a flat free surface in the far field.
Resumo:
Nitrogen balance is increasingly used as an indicator of the environmental performance of agricultural sector in national, international, and global contexts. There are three main methods of accounting the national nitrogen balance: farm gate, soil surface, and soil system. OECD (2008) recently reported the nitrogen and phosphorus balances for member countries for the 1985 - 2004 period using the soil surface method. The farm gate and soil system methods were also used in some international projects. Some studies have provided the comparison among these methods and the conclusion is mixed. The motivation of this present paper was to combine these three methods to provide a more detailed auditing of the nitrogen balance and flows for national agricultural production. In addition, the present paper also provided a new strategy of using reliable international and national data sources to calculate nitrogen balance using the farm gate method. The empirical study focused on the nitrogen balance of OECD countries for the period from 1985 to 2003. The N surplus sent to the total environment of OECD surged dramatically in early 1980s, gradually decreased during 1990s but exhibited an increasing trends in early 2000s. The overall N efficiency however fluctuated without a clear increasing trend. The eco-environmental ranking shows that Australia and Ireland were the worst while Korea and Greece were the best.
Resumo:
Large Igneous Provinces are exceptional intraplate igneous events throughout Earth’s history. Their significance and potential global impact is related to the total volume of magma intruded and released during these geologically brief events (peak eruptions are often within 1-5 Myrs duration) where millions to tens of millions of cubic kilometers of magma are produced. In some cases, at least 1% of the Earth’s surface has been directly covered in volcanic rock, being equivalent to the size of small continents with comparable crustal thicknesses. Large Igneous Provinces are thus important, albeit episodic episodes of new crust addition. However, most magmatism is basaltic so that contributions to crustal growth will not always be picked up in zircon geochronology studies that better trace major episodes of extension-related silicic magmatism and the silicic Large Igneous Provinces. Much headway has been made on our understanding of these anomalous igneous events over the last 25 years, driving many new ideas and models. This includes their: 1) global spatial and temporal distribution, with a long-term average of one event approximately every 20 Myrs, but a clear clustering of events at times of supercontinent break-up – Large Igneous Provinces are thus an integral part of the Wilson cycle and are becoming an increasingly important tool in reconnecting dispersed continental fragments; 2) compositional diversity that in part reflects their crustal setting of ocean basins, and continental interiors and margins where in the latter setting, LIP magmatism can be silicicdominant; 3) mineral and energy resources with major PGE and precious metal resources being hosted in these provinces, as well as magmatism impacting on the hydrocarbon potential of volcanic basins and rifted margins through enhancing source rock maturation, providing fluid migration pathways, and trap formation; 4) biospheric, hydrospheric and atmospheric impacts, with Large Igneous Provinces now widely regarded as a key trigger mechanism for mass extinctions, although the exact kill mechanism(s) are still being resolved; 5) role in mantle geodynamics and thermal evolution of the Earth, by potentially recording the transport of material from the lower mantle or core-mantle boundary to the Earth's surface and being a fundamental component in whole mantle convection models; and 6) recognition on the inner planets where the lack of plate tectonics and erosional processes and planetary antiquity means that the very earliest record of LIP events during planetary evolution may be better preserved than on Earth.
Resumo:
An efficient numerical method to compute nonlinear solutions for two-dimensional steady free-surface flow over an arbitrary channel bottom topography is presented. The approach is based on a boundary integral equation technique which is similar to that of Vanden-Broeck's (1996, J. Fluid Mech., 330, 339-347). The typical approach for this problem is to prescribe the shape of the channel bottom topography, with the free-surface being provided as part of the solution. Here we take an inverse approach and prescribe the shape of the free-surface a priori while solving for the corresponding bottom topography. We show how this inverse approach is particularly useful when studying topographies that give rise to wave-free solutions, allowing us to easily classify eleven basic flow types. Finally, the inverse approach is also adapted to calculate a distribution of pressure on the free-surface, given the free-surface shape itself.
Resumo:
We applied small-angle neutron scattering (SANS) and ultra small-angle neutron scattering (USANS) to monitor evolution of the CO2 adsorption in porous silica as a function of CO2 pressure and temperature in pores of different sizes. The range of pressures (0 < P < 345 bar) and temperatures (T=18 OC, 35 OC and 60 OC) corresponded to subcritical, near critical and supercritical conditions of bulk fluid. We observed that the adsorption behavior of CO2 is fundamentally different in large and small pores with the sizes D > 100 Å and D < 30 Å, respectively. Scattering data from large pores indicate formation of a dense adsorbed film of CO2 on pore walls with the liquid-like density (ρCO2)ads≈0.8 g/cm3. The adsorbed film coexists with unadsorbed fluid in the inner pore volume. The density of unadsorbed fluid in large pores is temperature and pressure dependent: it is initially lower than (ρCO2)ads and gradually approaches it with pressure. In small pores compressed CO2 gas completely fills the pore volume. At the lowest pressures of the order of 10 bar and T=18 OC, the fluid density in smallest pores available in the matrix with D ~ 10 Å exceeds bulk fluid density by a factor of ~ 8. As pressure increases, progressively larger pores become filled with the condensed CO2. Fluid densification is only observed in pores with sizes less than ~ 25 – 30 Å. As the density of the invading fluid reaches (ρCO2)bulk~ 0.8 g/cm3, pores of all sizes become uniformly filled with CO2 and the confinement effects disappear. At higher densities the fluid in small pores appears to follow the equation of state of bulk CO2 although there is an indication that the fluid density in the inner volume of large pores may exceed the density of the adsorbed layer. The equivalent internal pressure (Pint) in the smallest pores exceeds the external pressure (Pext) by a factor of ~ 5 for both sub- and supercritical CO2. Pint gradually approaches Pext as D → 25 – 30 Å and is independent of temperature in the studied range of 18 OC ≤ T ≤ 60 OC. The obtained results demonstrate certain similarity as well as differences between adsorption of subcritical and supercritical CO2 in disordered porous silica. High pressure small angle scattering experiments open new opportunities for in situ studies of the fluid adsorption in porous media of interest to CO2 sequestration, energy storage, and heterogeneous catalysis.
Resumo:
Palygorskite has a fibrous like morphology with a distinctive layered appearance. The simplified formula of palygorskite (Mg5Si8O20(OH)2(OH2)4 nH2O) indicates that two different types of water are present. The dehydration and rehydration of palygorskite have been studied using thermogravimetry and H2O-tem- perature programmed desorption. X-ray diffractograms, NH3 adsorption profiles, and NH3 desorption profiles were obtained for thermally treated palygorskite as a function of temperature. The results proved water molecules were mainly derived from Si–OH units. In addition, five kinds of acid sites were found for palygorskite. The number of acid sites of external surfaces was larger than that of the internal sur- faces. Bonding on the internal surface acid sites was stronger than the bonding of the external surfaces. Rehydration restored the folded structure of palygorskite when thermal treatment temperature was lower than 300 oC.
Resumo:
The hydrogenation kinetics of Mg is slow, impeding its application for mobile hydrogen storage. We demonstrate by ab initio density functional theory (DFT) calculations that the reaction path can be greatly modified by adding transition metal catalysts. Contrasting with Ti doping, a Pd dopant will result in a very small activation barrier for both dissociation of molecular hydrogen and diffusion of atomic H on the Mg surface. This new computational finding supports for the first time by ab initio simulationthe proposed hydrogen spillover mechanism for rationalizing experimentally observed fast hydrogenation kinetics for Pd-capped Mg materials.
Resumo:
We perform an analytic and numerical study of an inviscid contracting bubble in a two-dimensional Hele-Shaw cell, where the effects of both surface tension and kinetic undercooling on the moving bubble boundary are not neglected. In contrast to expanding bubbles, in which both boundary effects regularise the ill-posedness arising from the viscous (Saffman-Taylor) instability, we show that in contracting bubbles the two boundary effects are in competition, with surface tension stabilising the boundary, and kinetic undercooling destabilising it. This competition leads to interesting bifurcation behaviour in the asymptotic shape of the bubble in the limit it approaches extinction. In this limit, the boundary may tend to become either circular, or approach a line or "slit" of zero thickness, depending on the initial condition and the value of a nondimensional surface tension parameter. We show that over a critical range of surface tension values, both these asymptotic shapes are stable. In this regime there exists a third, unstable branch of limiting self-similar bubble shapes, with an asymptotic aspect ratio (dependent on the surface tension) between zero and one. We support our asymptotic analysis with a numerical scheme that utilises the applicability of complex variable theory to Hele-Shaw flow.
Resumo:
The study presented here applies the highly parameterised semi-distributed U.S. Department of Agriculture Soil and Water Assessment Tool (SWAT) to an Australian subtropical catchment. SWAT has been applied to numerous catchments worldwide and is considered to be a useful tool that is under ongoing development with contributions coming from different research groups in different parts of the world. In a preliminary run the SWAT model application for the Elimbah Creek catchment has estimated water yield for the catchment and has quantified the different sources. For the modelling period of April 1999 to September 2009 the results show that the main sources of water in Elimbah Creek are total surface runoff and lateral flow (65%). Base-flow contributes 36% to the total runoff. On a seasonal basis modelling results show a shift in the source of water contributing to Elimbah Creek from surface runoff and lateral flow during intense summer storms to base-flow conditions during dry months. Further calibration and validation of these results will confirm that SWAT provides an alternative to Australian water balance models.
Resumo:
Objective: To determine solar load-bearing structures in the feet of feral horses and investigate morphological characteristics of the sole in feral horses and domestic Thoroughbreds. Sample: Forelimbs from cadavers of 70 feral horses and 20 domestic Thoroughbreds in Australia. Procedures: Left forefeet were obtained from 3 feral horse populations from habitats of soft substrate (SS [n = 10 horses]), hard substrate (HS [10]), and a combination of SS and HS (10) and loaded in vitro. Pressure distribution was measured with a pressure plate. Sole depth was measured at 12 points across the solar plane in feet obtained from feral horses from SS (n = 20 horses) and HS (20) habitats and domestic Thoroughbreds (20). Results: Feet of feral horses from HS habitats loaded the periphery of the sole and hoof wall on a flat surface. Feral horses from HS or SS habitats had greater mean sole depth than did domestic Thoroughbreds. Sole depth was greatest peripherally and was correlated with the loading pattern. Conclusions and Clinical Relevance: The peripheral aspect of the sole in the feet of feral horses had a load-bearing function. Because of the robust nature of the tissue architecture, the hoof capsule of feral horses may be less flexible than that of typical domestic horses. The application of narrow-web horseshoes may not take full advantage of the load-bearing and force-dissipating properties of the peripheral aspect of the sole. Further studies are required to understand the effects of biomechanical stimulation on the adaptive responses of equine feet.
Resumo:
Presented is the material and gas sensing properties of graphene-like nano-sheets deposited on 36° YX lithium tantalate (LiTaO3) surface acoustic wave (SAW) transducers. The graphene-like nano-sheets were characterized via scanning electron microscopy (SEM), atomic force microscopy(AFM)and X-ray photoelectron spectroscopy (XPS). The graphenelike nano-sheet/SAW sensors were exposed to different concentrations of hydrogen (H2) gas in a synthetic air at room temperature. The developed sensors exhibit good sensitivity towards low concentrations of H2 in ambient conditions, as well as excellent dynamic performance towards H2 at room temperature.
Resumo:
Thin films consisting of graphene-like nano-sheets were deposited onto LiTaO3 surface acoustic wave transducers. A thickness of less than 10 nm and the existence of C-C bond were observed during the characterization of graphene-like nano-sheets. Frequency shift of 18.7 kHz and 14.9 kHz towards 8.5 ppm NO2 at two different operating temperature, 40°C and 25°C, respectively, was observed.
Resumo:
Intense exercise stimulates the systemic release of a variety of factors that alter neutrophil surface receptor expression and functional activity. These alterations may influence resistance to infection after intense exercise. The aim of this study was to examine the influence of exercise intensity on neutrophil receptor expression, degranulation (measured by plasma and intracellular myeloperoxidase concentrations), and respiratory burst activity. Ten well-trained male runners ran on a treadmill for 60 min at 60% [moderate-intensity exercise (MI)] and 85% maximal oxygen consumption [high-intensity exercise (HI)]. Blood was drawn immediately before and after exercise and at 1 h postexercise. Immediately after HI, the expression of the neutrophil receptor CD16 was significantly below preexercise values (P < 0.01), whereas MI significantly reduced CD35 expression below preexercise values (P < 0.05). One hour after exercise at both intensities, there was a significant decline in CD11b expression (P < 0.05) and a further decrease in CD16 expression compared with preexercise values (P < 0.01). CD16 expression was lower 1 h after HI than 1 h after MI (P < 0.01). Immediately after HI, intracellular myeloperoxidase concentration was less than preexercise values (P < 0.01), whereas plasma myeloperoxidase concentration was greater (P < 0.01), indicating that HI stimulated neutrophil degranulation. Plasma myeloperoxidase concentration was higher immediately after HI than after MI (P < 0.01). Neutrophil respiratory burst activity increased after HI (P < 0.01). In summary, both MI and HI reduced neutrophil surface receptor expression. Although CD16 expression was reduced to a greater extent after HI, this reduction did not impair neutrophil degranulation and respiratory burst activity.