698 resultados para Mesoscopic superconductors
Resumo:
Nano-phase (5-20 nm) particles of YBa2(Cu0.5M 0.6)O6 [where M = Nb, Ta, Mo, W, Zr and Hf] have been introduced successfully into RE-Ba-Cu-O single grain superconductors. A study to enlarge the size of a single grain containing these particles has been carried out involving measurement of the growth rate as a function of YBa 2(Cu0.5M0.6)O6 phase concentration and degree of un-dercooling. The influence of the change in YBa2 (Cu0.8M0.5)O6 concentration on microstructural features is also investigated and the superconducting properties of these large grain superconductors are presented. © 2005 IEEE.
Resumo:
Future applications of high temperature superconductors require bulk materials of a complex shape. The multi-seeded-melt-growth process (MSMG) represents a promising technique for obtaining qualitatively well oriented bulk materials with different kinds of shape. In the MSMG process, several seeds are placed on a precursor pellet, from which the growth of the bulk starts. A certain problem of the MSMG process is that grain boundaries become inevitable when the growth fronts of two neighboring seeds collide. These grain boundaries are responsible for a reduction of the critical currents and pose a problem for high current applications. By polishing the sample step by step, the influence of the grain boundaries was investigated by scanning Hall probe measurements and by the magnetoscan technique. Additionally, optical microscopy and electron microscopy were employed to investigate the details of the microstructure. © 2005 IEEE.
Resumo:
We have applied the seeded infiltration and growth (IG) technique to the processing of samples containing Ag in an attempt to fabricate Ag-doped Y-Ba-Cu-O (YBCO) bulk superconductors with enhanced mechanical properties. The IG technique has been used successfully to grow bulk Ag-doped YBCO superconductors of up to 25 mm in diameter in the form of single grains. The distribution of Ag in the parent Y-123 matrix fabricated by the IG technique is observed to be at least as uniform as that in samples grown by conventional top seeded melt growth (TSMG). Fine Y-211 particles were observed to be embedded within the Y-123 matrix for the IG processed samples, leading to a high critical current density, Jc, of over 70 kA/cm2 at 77.3 K in self-field. The distribution of Y-211 in the IG sample microstructure, however, is inhomogeneous, which leads to a variation in the spatial distribution of Jc throughout the bulk matrix. A maximum-trapped field of around 0.43 T at 1.2 mm above the sample surface (i.e. including 0.7 mm for the sensor mould thickness) is observed at liquid nitrogen temperature, despite the relatively small grain size of the sample (20 mm diameter × 7 mm thickness). © 2008 IOP Publishing Ltd.