266 resultados para Merluccius gayi peruanus Ginsburg
Resumo:
Gemstone Team Peace in Prisons
Resumo:
There is great potential for host-based gene expression analysis to impact the early diagnosis of infectious diseases. In particular, the influenza pandemic of 2009 highlighted the challenges and limitations of traditional pathogen-based testing for suspected upper respiratory viral infection. We inoculated human volunteers with either influenza A (A/Brisbane/59/2007 (H1N1) or A/Wisconsin/67/2005 (H3N2)), and assayed the peripheral blood transcriptome every 8 hours for 7 days. Of 41 inoculated volunteers, 18 (44%) developed symptomatic infection. Using unbiased sparse latent factor regression analysis, we generated a gene signature (or factor) for symptomatic influenza capable of detecting 94% of infected cases. This gene signature is detectable as early as 29 hours post-exposure and achieves maximal accuracy on average 43 hours (p = 0.003, H1N1) and 38 hours (p-value = 0.005, H3N2) before peak clinical symptoms. In order to test the relevance of these findings in naturally acquired disease, a composite influenza A signature built from these challenge studies was applied to Emergency Department patients where it discriminates between swine-origin influenza A/H1N1 (2009) infected and non-infected individuals with 92% accuracy. The host genomic response to Influenza infection is robust and may provide the means for detection before typical clinical symptoms are apparent.
Resumo:
Exposure to influenza viruses is necessary, but not sufficient, for healthy human hosts to develop symptomatic illness. The host response is an important determinant of disease progression. In order to delineate host molecular responses that differentiate symptomatic and asymptomatic Influenza A infection, we inoculated 17 healthy adults with live influenza (H3N2/Wisconsin) and examined changes in host peripheral blood gene expression at 16 timepoints over 132 hours. Here we present distinct transcriptional dynamics of host responses unique to asymptomatic and symptomatic infections. We show that symptomatic hosts invoke, simultaneously, multiple pattern recognition receptors-mediated antiviral and inflammatory responses that may relate to virus-induced oxidative stress. In contrast, asymptomatic subjects tightly regulate these responses and exhibit elevated expression of genes that function in antioxidant responses and cell-mediated responses. We reveal an ab initio molecular signature that strongly correlates to symptomatic clinical disease and biomarkers whose expression patterns best discriminate early from late phases of infection. Our results establish a temporal pattern of host molecular responses that differentiates symptomatic from asymptomatic infections and reveals an asymptomatic host-unique non-passive response signature, suggesting novel putative molecular targets for both prognostic assessment and ameliorative therapeutic intervention in seasonal and pandemic influenza.
Resumo:
BACKGROUND: Nonparametric Bayesian techniques have been developed recently to extend the sophistication of factor models, allowing one to infer the number of appropriate factors from the observed data. We consider such techniques for sparse factor analysis, with application to gene-expression data from three virus challenge studies. Particular attention is placed on employing the Beta Process (BP), the Indian Buffet Process (IBP), and related sparseness-promoting techniques to infer a proper number of factors. The posterior density function on the model parameters is computed using Gibbs sampling and variational Bayesian (VB) analysis. RESULTS: Time-evolving gene-expression data are considered for respiratory syncytial virus (RSV), Rhino virus, and influenza, using blood samples from healthy human subjects. These data were acquired in three challenge studies, each executed after receiving institutional review board (IRB) approval from Duke University. Comparisons are made between several alternative means of per-forming nonparametric factor analysis on these data, with comparisons as well to sparse-PCA and Penalized Matrix Decomposition (PMD), closely related non-Bayesian approaches. CONCLUSIONS: Applying the Beta Process to the factor scores, or to the singular values of a pseudo-SVD construction, the proposed algorithms infer the number of factors in gene-expression data. For real data the "true" number of factors is unknown; in our simulations we consider a range of noise variances, and the proposed Bayesian models inferred the number of factors accurately relative to other methods in the literature, such as sparse-PCA and PMD. We have also identified a "pan-viral" factor of importance for each of the three viruses considered in this study. We have identified a set of genes associated with this pan-viral factor, of interest for early detection of such viruses based upon the host response, as quantified via gene-expression data.
Resumo:
BACKGROUND: Risk assessment with a thorough family health history is recommended by numerous organizations and is now a required component of the annual physical for Medicare beneficiaries under the Affordable Care Act. However, there are several barriers to incorporating robust risk assessments into routine care. MeTree, a web-based patient-facing health risk assessment tool, was developed with the aim of overcoming these barriers. In order to better understand what factors will be instrumental for broader adoption of risk assessment programs like MeTree in clinical settings, we obtained funding to perform a type III hybrid implementation-effectiveness study in primary care clinics at five diverse healthcare systems. Here, we describe the study's protocol. METHODS/DESIGN: MeTree collects personal medical information and a three-generation family health history from patients on 98 conditions. Using algorithms built entirely from current clinical guidelines, it provides clinical decision support to providers and patients on 30 conditions. All adult patients with an upcoming well-visit appointment at one of the 20 intervention clinics are eligible to participate. Patient-oriented risk reports are provided in real time. Provider-oriented risk reports are uploaded to the electronic medical record for review at the time of the appointment. Implementation outcomes are enrollment rate of clinics, providers, and patients (enrolled vs approached) and their representativeness compared to the underlying population. Primary effectiveness outcomes are the percent of participants newly identified as being at increased risk for one of the clinical decision support conditions and the percent with appropriate risk-based screening. Secondary outcomes include percent change in those meeting goals for a healthy lifestyle (diet, exercise, and smoking). Outcomes are measured through electronic medical record data abstraction, patient surveys, and surveys/qualitative interviews of clinical staff. DISCUSSION: This study evaluates factors that are critical to successful implementation of a web-based risk assessment tool into routine clinical care in a variety of healthcare settings. The result will identify resource needs and potential barriers and solutions to implementation in each setting as well as an understanding potential effectiveness. TRIAL REGISTRATION: NCT01956773.
Resumo:
Copyright © Taylor & Francis Group, LLC 2015.Type 2 diabetes is a major health burden in the United States, and population trends suggest this burden will increase. High interest in, and increased availability of, testing for genetic risk of type 2 diabetes presents a new opportunity for reducing type 2 diabetes risk for many patients; however, to date, there is little evidence that genetic testing positively affects type 2 diabetes prevention. Genetic information may not fit patients illness representations, which may reduce the chances of risk-reducing behavior changes. The present study aimed to examine illness representations in a clinical sample who are at risk for type 2 diabetes and interested in genetic testing. The authors used the Common Sense Model to analyze survey responses of 409 patients with type 2 diabetes risk factors. Patients were interested in genetic testing for type 2 diabetes risk and believed in its importance. Most patients believed that genetic factors are important to developing type 2 diabetes (67%), that diet and exercise are effective in preventing type 2 diabetes (95%), and that lifestyle changes are more effective than drugs (86%). Belief in genetic causality was not related to poorer self-reported health behaviors. These results suggest that patients interest in genetic testing for type 2 diabetes might produce a teachable moment that clinicians can use to counsel behavior change.
Resumo:
BACKGROUND: Patients, clinicians, researchers and payers are seeking to understand the value of using genomic information (as reflected by genotyping, sequencing, family history or other data) to inform clinical decision-making. However, challenges exist to widespread clinical implementation of genomic medicine, a prerequisite for developing evidence of its real-world utility. METHODS: To address these challenges, the National Institutes of Health-funded IGNITE (Implementing GeNomics In pracTicE; www.ignite-genomics.org ) Network, comprised of six projects and a coordinating center, was established in 2013 to support the development, investigation and dissemination of genomic medicine practice models that seamlessly integrate genomic data into the electronic health record and that deploy tools for point of care decision making. IGNITE site projects are aligned in their purpose of testing these models, but individual projects vary in scope and design, including exploring genetic markers for disease risk prediction and prevention, developing tools for using family history data, incorporating pharmacogenomic data into clinical care, refining disease diagnosis using sequence-based mutation discovery, and creating novel educational approaches. RESULTS: This paper describes the IGNITE Network and member projects, including network structure, collaborative initiatives, clinical decision support strategies, methods for return of genomic test results, and educational initiatives for patients and providers. Clinical and outcomes data from individual sites and network-wide projects are anticipated to begin being published over the next few years. CONCLUSIONS: The IGNITE Network is an innovative series of projects and pilot demonstrations aiming to enhance translation of validated actionable genomic information into clinical settings and develop and use measures of outcome in response to genome-based clinical interventions using a pragmatic framework to provide early data and proofs of concept on the utility of these interventions. Through these efforts and collaboration with other stakeholders, IGNITE is poised to have a significant impact on the acceleration of genomic information into medical practice.
Resumo:
PURPOSE: Risk-stratified guidelines can improve quality of care and cost-effectiveness, but their uptake in primary care has been limited. MeTree, a Web-based, patient-facing risk-assessment and clinical decision support tool, is designed to facilitate uptake of risk-stratified guidelines. METHODS: A hybrid implementation-effectiveness trial of three clinics (two intervention, one control). PARTICIPANTS: consentable nonadopted adults with upcoming appointments. PRIMARY OUTCOME: agreement between patient risk level and risk management for those meeting evidence-based criteria for increased-risk risk-management strategies (increased risk) and those who do not (average risk) before MeTree and after. MEASURES: chart abstraction was used to identify risk management related to colon, breast, and ovarian cancer, hereditary cancer, and thrombosis. RESULTS: Participants = 488, female = 284 (58.2%), white = 411 (85.7%), mean age = 58.7 (SD = 12.3). Agreement between risk management and risk level for all conditions for each participant, except for colon cancer, which was limited to those <50 years of age, was (i) 1.1% (N = 2/174) for the increased-risk group before MeTree and 16.1% (N = 28/174) after and (ii) 99.2% (N = 2,125/2,142) for the average-risk group before MeTree and 99.5% (N = 2,131/2,142) after. Of those receiving increased-risk risk-management strategies at baseline, 10.5% (N = 2/19) met criteria for increased risk. After MeTree, 80.7% (N = 46/57) met criteria. CONCLUSION: MeTree integration into primary care can improve uptake of risk-stratified guidelines and potentially reduce "overuse" and "underuse" of increased-risk services.Genet Med 18 10, 1020-1028.
Resumo:
We synthesise and update results from the suite of biophysical, larval-dispersal models developed in the Benguela Current ecosystem. Biophysical models of larval dispersal use outputs of physical hydrodynamic models as inputs to individual-based models in which biological processes acting during the larval life are included. In the Benguela, such models were first applied to simulate the dispersal of anchovy Engraulis encrasicolus and sardine Sardinops sagax ichthyoplankton, and more recently of the early life stages of chokka-squid Loligo reynaudii and Cape hakes Merluccius spp. We identify how the models have helped advance understanding of key processes for these species. We then discuss which aspects of the early life of marine species in the Benguela Current ecosystem are still not well understood and could benefit from new modelling studies.
Resumo:
The growing accessibility to genomic resources using next-generation sequencing (NGS) technologies has revolutionized the application of molecular genetic tools to ecology and evolutionary studies in non-model organisms. Here we present the case study of the European hake (Merluccius merluccius), one of the most important demersal resources of European fisheries. Two sequencing platforms, the Roche 454 FLX (454) and the Illumina Genome Analyzer (GAII), were used for Single Nucleotide Polymorphisms (SNPs) discovery in the hake muscle transcriptome. De novo transcriptome assembly into unique contigs, annotation, and in silico SNP detection were carried out in parallel for 454 and GAII sequence data. High-throughput genotyping using the Illumina GoldenGate assay was performed for validating 1,536 putative SNPs. Validation results were analysed to compare the performances of 454 and GAII methods and to evaluate the role of several variables (e.g. sequencing depth, intron-exon structure, sequence quality and annotation). Despite well-known differences in sequence length and throughput, the two approaches showed similar assay conversion rates (approximately 43%) and percentages of polymorphic loci (67.5% and 63.3% for GAII and 454, respectively). Both NGS platforms therefore demonstrated to be suitable for large scale identification of SNPs in transcribed regions of non-model species, although the lack of a reference genome profoundly affects the genotyping success rate. The overall efficiency, however, can be improved using strict quality and filtering criteria for SNP selection (sequence quality, intron-exon structure, target region score).
Resumo:
Dissertação mest., Biologia Marinha, Universidade do Algarve, 2009
Resumo:
Climatic changes that affected the Northeastern Atlantic frontage are analyzed on the basis of the evolution of faunas and floras from the late Oligocene onwards. The study deals with calcareous nannoplankton, marine micro- and macrofaunas, some terrestrial vertebrates and vegetal assemblages. The climate, first tropical, underwent a progressive cooling (North-South thermic gradient). Notable climatic deteriorations (withdrawal towards the South or disappearance of taxa indicative of warm climate and appearance of "cold" taxa) are evidenced mainly during the Middle Miocene and the late Pliocene. Faunas and floras of modern pattern have regained, after the Pleistocene glaciations, a new climatic ranging of a temperate type in the northern part.
Resumo:
Describe los niveles de abundancia , distribución, concentración y características biológicas de las poblaciones de la anchoveta y sardina a principios de 1995, así como conocer las características del ambiente y su influencia sobre el reclutamiento. La información proviene de las capturas y muestreos biológicos de 129 lances de comprobación ejecutados durante el crucero. La composición por especies estuvo conformada principalmente por anchoveta (Engraulis ringens), sardina (Sardinops sagax sagax), jurel (Trachurus picturatus murphyi) y caballa (Scomber japonicus peruanus). Otras especies fueron el bagre con faja (Galeichthys peruvianus), falso volador (Prionotus stephanophrys), múnida (Pleuroncodes monodon), etc.
Resumo:
Se han analizado 626 contenidos estomacales de "anchoveta peruana" Engraulis ringes, 251 de "caballa" Scomber japonicus peruanus y 206 de "jurel" Trachurus picturatus murphyi, colectados entre lo 5°12 ' a 18°17 'S durante el verano de 1997. El alimento de la anchoveta estuvo compuesto por diatomeas, silicoflagelados, dinoflagelados, tintínidos, copépodos, entre los más importantes. La caballa y el jurel se alimentaron de crustáceos planctónicos destacando los eufáusidos; en la caballa, además e presentaron peces de las familias Engraulidae y Myctophidae. Usando el software MAXIMS se ha calculado la ración diaria de alimentación de la anchoveta en 0,4391 g.dia-1. Respecto a la caballa y al jurel se vienen realizando las primeras observaciones con este software, habiéndose determinado las raciones en 6,4452 g.dia-1 y 2,9129 g.dia-1, respectivamente. La similaridad alimentaria entre los mismos fue calculada utilizando el Índice de JACCARD que permitió observar diferencias sólo en la utilización del ítem anchoveta siendo la caballa la única que la consumió. En líneas generales la composición alimentaria observada corresponde a patrones e años normales.