989 resultados para Merian, Maria
Resumo:
We present sedimentary geochemical data and in situ benthic flux measurements of dissolved inorganic nitrogen (DIN: NO3-, NO2-, NH4+) and oxygen (O2) from 7 sites with variable sand content along 18°N offshore Mauritania (NW Africa). Bottom water O2 concentrations at the shallowest station were hypoxic (42 µM) and increased to 125 µM at the deepest site (1113 m). Total oxygen uptake rates were highest on the shelf (-10.3 mmol O2 /m2 d) and decreased quasi-exponentially with water depth to -3.2 mmol O2 /m2 d. Average denitrification rates estimated from a flux balance decreased with water depth from 2.2 to 0.2 mmol N /m2 d. Overall, the sediments acted as net sink for DIN. Observed increases in delta 15NNO3 and delta 18ONO3 in the benthic chamber deployed on the shelf, characterized by muddy sand, were used to calculate apparent benthic nitrate fractionation factors of 8.0 pro mille (15epsilon app) and 14.1 pro mille (18epsilon app). Measurements of delta 15NNO2 further demonstrated that the sediments acted as a source of 15N depleted NO2-. These observations were analyzed using an isotope box model that considered denitrification and nitrification of NH4+ and NO2-. The principal findings were that (i) net benthic 14N/15N fractionation (epsilon DEN) was 12.9 ± 1.7pro mille, (ii) inverse fractionation during nitrite oxidation leads to an efflux of isotopically light NO2- (-22 ± 1.9 pro mille), and (iii) direct coupling between nitrification and denitrification in the sediment is negligible. Previously reported epsilon DEN for fine-grained sediments are much lower (4-8 pro mille). We speculate that high benthic nitrate fractionation is driven by a combination of enhanced porewater-seawater exchange in permeable sediments and the hypoxic, high productivity environment. Although not without uncertainties, the results presented could have important implications for understanding the current state of the marine N cycle.
Resumo:
From the 12th until the 17th of July 2016, research vessel Maria S. Merian entered the Nordvestfjord of Scorsby Sound (East Greenland) as part of research cruise MSM56, "Ecological chemistry in Arctic fjords". A large variety of chemical and biological parameters of fjord and meltwater were measured during this cruise to characterize biogeochemical fluxes in arctic fjords. The photo documentation described here was a side project. It was started when we were close to the Daugaard-Jensen glacier at the end of the Nordvestfjord and realized that not many people have seen this area before and photos available for scientists are probably rare. These pictures shall help to document climate and landscape changes in a remote area of East Greenland. Pictures were taken with a Panasonic Lumix G6 equipped with either a 14-42 or 45-150 objective (zoom factor available in jpg metadata). Polarizer filters were used on both objectives. The time between taking the pictures and writing down the coordinates was maximally one minute but usually shorter. The uncertainty in position is therefore small as we were steaming slowly most of the time the pictures were taken (i.e. below 5 knots). I assume the uncertainty is in most cases below 200 m radius of the noted position. I did not check the direction I directed the camera to with a compass at the beginning. Hence, the direction that was noted is an approximation based on the navigation map and the positioning of the ship. The uncertainty was probably around +/- 40° but initially (pictures 1-17) perhaps even higher as this documentation was a spontaneous idea and it took some time to get the orientation right. It should be easy, however, to find the location of the mountains and glaciers when being on the respective positions because the mountains have a quite characteristic shape. In a later stage of this documentation, I took pictures from the bridge and used the gyros to approximate the direction the camera was pointed at. Here the uncertainty was much lower (i.e. +/- 20° or better). Directions approximated with the help of gyros have degree values in the overview table. The ship data provided in the MSM56 cruise report will contain all kinds of sensor data from Maria S. Merian sensor setup. This data can also be used to further constrain the position the pictures were taken because the exact time a photo was shot is noted in the metadata of the .jpg photo file. The shipboard clock was set on UTC. It was 57 minutes and 45 seconds behind the time in the camera. For example 12:57:45 on the camera was 12:00:00 UTC on the ship. All pictures provided here can be used for scientific purposes. In case of usage in presentations etc. please acknowledge RV Maria S. Merian (MSM56) and Lennart T. Bach as author. Please inform me and ask for reprint permission in case you want to use the pictures for scientific publications. I would like to thank all participants and the crew of Maria S. Merian Cruise 56 (MSM56, Ecological chemistry in Arctic fjords).
Resumo:
The composition and abundance of algal pigments provide information on phytoplankton community characteristics such as photoacclimation, overall biomass and taxonomic composition. In particular, pigments play a major role in photoprotection and in the light-driven part of photosynthesis. Most phytoplankton pigments can be measured by high-performance liquid chromatography (HPLC) techniques applied to filtered water samples. This method, as well as other laboratory analyses, is time consuming and therefore limits the number of samples that can be processed in a given time. In order to receive information on phytoplankton pigment composition with a higher temporal and spatial resolution, we have developed a method to assess pigment concentrations from continuous optical measurements. The method applies an empirical orthogonal function (EOF) analysis to remote-sensing reflectance data derived from ship-based hyperspectral underwater radiometry and from multispectral satellite data (using the Medium Resolution Imaging Spectrometer - MERIS - Polymer product developed by Steinmetz et al., 2011, doi:10.1364/OE.19.009783) measured in the Atlantic Ocean. Subsequently we developed multiple linear regression models with measured (collocated) pigment concentrations as the response variable and EOF loadings as predictor variables. The model results show that surface concentrations of a suite of pigments and pigment groups can be well predicted from the ship-based reflectance measurements, even when only a multispectral resolution is chosen (i.e., eight bands, similar to those used by MERIS). Based on the MERIS reflectance data, concentrations of total and monovinyl chlorophyll a and the groups of photoprotective and photosynthetic carotenoids can be predicted with high quality. As a demonstration of the utility of the approach, the fitted model based on satellite reflectance data as input was applied to 1 month of MERIS Polymer data to predict the concentration of those pigment groups for the whole eastern tropical Atlantic area. Bootstrapping explorations of cross-validation error indicate that the method can produce reliable predictions with relatively small data sets (e.g., < 50 collocated values of reflectance and pigment concentration). The method allows for the derivation of time series from continuous reflectance data of various pigment groups at various regions, which can be used to study variability and change of phytoplankton composition and photophysiology.
Resumo:
Flemish Pass, located at the western subpolar margin, is a passage (sill depth 1200 m) that is constrained by the Grand Banks and the underwater plateau Flemish Cap. In addition to the Deep Western Boundary Current (DWBC) pathway offshore of Flemish Cap, Flemish Pass represents another southward transport pathway for two modes of Labrador Sea Water (LSW), the lightest component of North Atlantic Deep Water carried with the DWBC. This pathway avoids potential stirring regions east of Flemish Cap and deflection into the interior North Atlantic. Ship-based velocity measurements between 2009 and 2013 at 47°N in Flemish Pass and in the DWBC east of Flemish Cap revealed a considerable southward transport of Upper LSW through Flemish Pass (15-27%, -1.0 to -1.5 Sv). About 98% of the denser Deep LSW were carried around Flemish Cap as Flemish Pass is too shallow for considerable transport of Deep LSW. Hydrographic time series from ship-based measurements show a significant warming of 0.3°C/decade and a salinification of 0.03/decade of the Upper LSW in Flemish Pass between 1993 and 2013. Almost identical trends were found for the evolution in the Labrador Sea and in the DWBC east of Flemish Cap. This indicates that the long-term hydrographic variability of Upper LSW in Flemish Pass as well as in the DWBC at 47°N is dominated by changes in the Labrador Sea, which are advected southward. Fifty years of numerical ocean model simulations in Flemish Pass suggest that these trends are part of a multidecadal cycle.