896 resultados para Mental retardation.
Resumo:
Background. Phenylketonuria is the most prevalent inborn error of aminoacid metabolism. Is an autosomal recessive disorder. It results from mutations in the phenylalanine hydroxilase (PAH) gene. Phenotypes can vary from mild hyperphenylalaninemia to a severe phenylketonuria wich, if untreated, results in severe mental retardation. Thanks to neonatal screening programmes, early detection and promp dietetic intervention (phenylalanine restricted diet lifelong) has allowed to avoid neurocognitive complications. Recently, a new therapy is become widely used: the oral supplementation with the PAH cofactor (BH4), wich can alleviate the diet burden. Genotype-phenotype correlation is a reliable tool to predict metabolic phenotype in order to establish a better tailored diet and to assess the potential responsiveness to BH4 therapy. Aim Molecular analysis of the PAH gene, evaluation of genotype-phenotype correlation and prediction of BH4 responsiveness in a group of HPA patients living in Emilia Romagna. Patients and methods. We studied 48 patients affected by PAH deficiency in regular follow-up to our Metabolic Centre. We performed the molecular analysis of these patients using genomic DNA extracted from peripheral blood samples Results. We obtained a full genotipic characterization of 46 patients. We found 87 mutant alleles and 35 different mutations, being the most frequent IVS10-11 G>A (19.3%), R261Q (9.1%), R158Q (9.1%), R408Q (6.8%) and A403V (5.7%), including 2 new ones (L287, N223Y) ever described previously. Notably, we found 15 mutations already identified in BH4-responsive patients, according to the literature. We found 42 different genotipic combinations, most of them in single patients and involving a BH4-responsive mutation. Conclusion. BH4 responsiveness is shown by a consistent number of PAH deficient hyperphenylalaninemic patients. This treatment, combined with a less restricted diet or as monotherapy, can reduce nutritional complications and improve the quality of life of these patients.
Resumo:
Mental retardation in Down syndrome (DS) has been imputed to the decreased brain volume, which is evident starting from the early phases of development. Recent studies in a widely used mouse model of DS, the Ts65Dn mouse, have shown that neurogenesis is severely impaired during the early phases of brain development, suggesting that this defect may be a major determinant of brain hypotrophy and mental retardation in individuals with DS. Recently, it has been found that in the cerebellum of Ts65Dn mice there is a defective responsiveness to Sonic Hedgehog (Shh), a potent mitogen that controls cell division during brain development, suggesting that failure of Shh signaling may underlie the reduced proliferation potency in DS. Based on these premises, we sought to identify the molecular mechanisms underlying derangement of the Shh pathway in neural precursor cells (NPCs) from Ts65Dn mice. We found that the expression levels of the Shh receptor Patched1 (Ptch1) were increased compared to controls both at the RNA and protein level. Partial silencing of Ptch1 expression in trisomic NPCs restored cell proliferation, indicating that proliferation impairment was due to Ptch1 overexpression. We further found that the overexpression of Ptch1 in trisomic NPCs is related to increased levels of AICD, a transcription-promoting fragment of amyloid precursor protein (APP). Increased AICD binding to the Ptch1 promoter favored its acetylated status, thus enhancing Ptch1 expression. Taken together, these data provide novel evidence that Ptch1 over expression underlies derangement of the Shh pathway in trisomic NPCs, with consequent proliferation impairment. The demonstration that Ptch1 over expression in trisomic NPCs is due to an APP fragment provides a link between this trisomic gene and the defective neuronal production that characterizes the DS brain.
Resumo:
Mutations in the dystrophin gene have long been recognised as a cause of mental retardation. However, for reasons that are unclear, some boys with dystrophin mutations do not show general cognitive deficits. To investigate the relationship between dystrophin mutations and cognition, the general intellectual abilities of a group of 25 boys with genetically confirmed Duchenne muscular dystrophy were evaluated. Furthermore, a subgroup underwent additional detailed neuropsychological assessment. The results showed a mean full scale intelligence quotient (IQ) of 88 (standard deviation 24). Patients performed very poorly on various neuropsychological tests, including arithmetics, digit span tests and verbal fluency. No simple relationship between dystrophin mutations and cognitive functioning could be detected. However, our analysis revealed that patients who lack the dystrophin isoform Dp140 have significantly greater cognitive problems.
Resumo:
Mucopolysaccharidoses are lysosomal storage disorders that are caused by a deficiency in the enzymes that degrade glycosaminoglycans. The accumulation of glycosaminoglycans affects multiple systems, resulting in coarse facial features, short stature, organomegaly, and variable neurological changes from normal intelligence to severe mental retardation and spasticity. Effects on the musculoskeletal system include dysostosis multiplex, joint stiffness, and muscle shortening. This article reports 2 patients with mucopolysaccharidosis type II (Hunter syndrome) who showed progressive equinus deformity of the feet. Both patients were treated with intramuscular botulinum toxin type A injections in the gastrocnemius and the soleus muscles, followed by serial casting. In both patients, passive range of motion, muscle tone, and gait performance were significantly improved. Botulinum toxin type A injections followed by serial casting are a therapeutic option for contractures in patients with mucopolysaccharidosis. However, the long-term effects and the effect of application in other muscles remain unknown.
Resumo:
BACKGROUND: Nephronophthisis (NPHP) is an autosomal recessive cystic kidney disease that constitutes the most common genetic cause of renal failure in the first three decades of life. Using positional cloning, six genes (NPHP1-6) have been identified as mutated in NPHP. In Joubert syndrome (JBTS), NPHP may be associated with cerebellar vermis aplasia/hypoplasia, retinal degeneration and mental retardation. In Senior-Løken syndrome (SLSN), NPHP is associated with retinal degeneration. Recently, mutations in NPHP6/CEP290 were identified as a new cause of JBTS. METHODS: Mutational analysis was performed on a worldwide cohort of 75 families with SLSN, 99 families with JBTS and 21 families with isolated nephronophthisis. RESULTS: Six novel and six known truncating mutations, one known missense mutation and one novel 3 bp pair in-frame deletion were identified in a total of seven families with JBTS, two families with SLSN and one family with isolated NPHP.
Resumo:
BACKGROUND: Duplications and deletions in the human genome can cause disease or predispose persons to disease. Advances in technologies to detect these changes allow for the routine identification of submicroscopic imbalances in large numbers of patients. METHODS: We tested for the presence of microdeletions and microduplications at a specific region of chromosome 1q21.1 in two groups of patients with unexplained mental retardation, autism, or congenital anomalies and in unaffected persons. RESULTS: We identified 25 persons with a recurrent 1.35-Mb deletion within 1q21.1 from screening 5218 patients. The microdeletions had arisen de novo in eight patients, were inherited from a mildly affected parent in three patients, were inherited from an apparently unaffected parent in six patients, and were of unknown inheritance in eight patients. The deletion was absent in a series of 4737 control persons (P=1.1x10(-7)). We found considerable variability in the level of phenotypic expression of the microdeletion; phenotypes included mild-to-moderate mental retardation, microcephaly, cardiac abnormalities, and cataracts. The reciprocal duplication was enriched in nine children with mental retardation or autism spectrum disorder and other variable features (P=0.02). We identified three deletions and three duplications of the 1q21.1 region in an independent sample of 788 patients with mental retardation and congenital anomalies. CONCLUSIONS: We have identified recurrent molecular lesions that elude syndromic classification and whose disease manifestations must be considered in a broader context of development as opposed to being assigned to a specific disease. Clinical diagnosis in patients with these lesions may be most readily achieved on the basis of genotype rather than phenotype.
Resumo:
BACKGROUND: Microarray genome analysis is realising its promise for improving detection of genetic abnormalities in individuals with mental retardation and congenital abnormality. Copy number variations (CNVs) are now readily detectable using a variety of platforms and a major challenge is the distinction of pathogenic from ubiquitous, benign polymorphic CNVs. The aim of this study was to investigate replacement of time consuming, locus specific testing for specific microdeletion and microduplication syndromes with microarray analysis, which theoretically should detect all known syndromes with CNV aetiologies as well as new ones. METHODS: Genome wide copy number analysis was performed on 117 patients using Affymetrix 250K microarrays. RESULTS: 434 CNVs (195 losses and 239 gains) were found, including 18 pathogenic CNVs and 9 identified as "potentially pathogenic". Almost all pathogenic CNVs were larger than 500 kb, significantly larger than the median size of all CNVs detected. Segmental regions of loss of heterozygosity larger than 5 Mb were found in 5 patients. CONCLUSIONS: Genome microarray analysis has improved diagnostic success in this group of patients. Several examples of recently discovered "new syndromes" were found suggesting they are more common than previously suspected and collectively are likely to be a major cause of mental retardation. The findings have several implications for clinical practice. The study revealed the potential to make genetic diagnoses that were not evident in the clinical presentation, with implications for pretest counselling and the consent process. The importance of contributing novel CNVs to high quality databases for genotype-phenotype analysis and review of guidelines for selection of individuals for microarray analysis is emphasised.
Resumo:
Smith-Magenis syndrome (SMS;OMIM# 182290) is a multiple congenital anomalies and mental retardation syndrome caused by a 3.7- Mb deletion on chromosome 17p11.2 or a mutation in the RAI1 gene. Although the majority of the SMS phenotype has been well described, limited studies are available describing growth patterns in SMS. There is some evidence that individuals with SMS develop obesity. Thus, this study aims to characterize the growth and potential influence of hyperphagia in a cohort of individuals with SMS. A retrospective chart review was conducted of 78 individuals with SMS through Baylor College of Medicine (BCM) at Texas Children¡¯s Hospital (TCH.) All documented height and weight measurements were abstracted and Z-scores (SD units) for height-for-age, length-for-age and BMI-for-age were calculated. Mail-out questionnaires were provided to the corresponding parents of the cohort to assess for the presence of hyperphagia through a validated hyperphagia questionnaire (HQ). Analysis of this data demonstrates that by the age ¡Ý 20 years males with SMS have mean BMI¡¯s in the 85th-90th percentile corresponding to an overweight BMI, and females with SMS had mean BMI¡¯s in the 95th -97th percentile corresponding to an obese BMI. Parents indicated that hyperphagia is present in individuals with SMS as 76% of parent¡¯s report having to lock food away from their child. Females¡¯ age ¡Ý 20 years of age had the highest mean behavior, drive and severity scores as well as the highest BMI. Thus, this study concludes that it appears overweight and obesity, as well as hyperphagia, are present in this cohort of SMS individuals. The results of this study will hopefully enable parents and caregivers of children with SMS to take preventative measures in order to control food related behaviors present in their children as well as to prevent overweight and obesity and the associated negative health consequences.
Resumo:
The Wnt pathways contribute to many processes in cancer and developmental biology, with β-catenin being a key canonical component. P120-catenin, which is structurally similar to β-catenin, regulates the expression of certain Wnt target genes, relieving repression conferred by the POZ/ zinc-finger transcription factor Kaiso. In my first project, employing Xenopus embryos and mammalian cell lines, I found that the degradation machinery of the canonical Wnt pathway modulates p120-catenin protein stability, especially p120 isoform-1, through mechanisms shared with b-catenin. Exogenous expression of destruction-complex components such as GSK3b or Axin promotes p120-catenin degradation, and consequently, is able to rescue developmental phenotypes resulting from p120 over-expression during early Xenopus embryonic development. Conversely, as predicted, the in vivo depletion of either Axin or GSK3b coordinately increased p120 and b-catenin levels, while p120 levels decreased upon LRP5/6 depletion, which are positive modulators in the canonical Wnt pathway. At the primary sequence level, I resolved conserved GSK3b phosphorylation sites in p120’s (isoform 1) amino-terminal region. Point-mutagenesis of these residues inhibited the association of destruction complex proteins including those involved in ubiquitination, resulting in p120-catenin stabilization. Importantly, we found that two additional p120-catenin family members, ARVCF-catenin and d-catenin, in common with b-catenin and p120, associate with Axin, and are degraded in Axin’s presence. Thus, by similar means, it appears that canonical Wnt signals coordinately modulate multiple catenin proteins having roles in development and conceivably disease states. In my second project, I found that the Dyrk1A kinase exhibits a positive effect upon p120-catenin levels. That is, unlike the negative regulator GSK3b kinase, a candidate screen revealed that Dyrk1A kinase enhances p120-catenin protein levels via increased half-life. Dyrk1A is encoded by a gene located within the trisomy of chromosome 21, which contributes to mental retardation in Down Syndrome patients. I found that Dyrk1A expression results in increased p120 protein levels, and that Dyrk1A specifically associates with p120 as opposed to other p120-catenin family members or b-catenin. Consistently, Dyrk1A depletion in mammalian cell lines and Xenopus embryos decreased p120-catenin levels. I further confirmed that Dyrk overexpression and knock-down modulates both Siamois and Wnt11 gene expression in the expected manner based upon the resulting latered levels of p120-catenin. I determined that Dyrk expression rescues Kaiso depletion effects (gastrulation failure; increased endogenous Wnt11 expression), and vice versa. I then identified a putative Dyrk phosphorylation region within the N-terminus of p120-catenin, which may also be responsible for Dyrk1A association. I went on to make a phosphomimic mutant, which when over-expressed, had the predicted enhanced capacity to positively modulate endogenous Wnt11 and Siamois expression, and thereby generate gastrulation defects. Given that Dyrk1A modulates Siamois expression through stabilization of p120-catenin, I further observed that ectopic expression of Dyrk can positively influence b-catenin’s capacity to generate ectopic dorsal axes when ventrally expressed in early Xenopus embryos. Future work will investigate how Dyrk1A modulates the Wnt signaling pathway through p120-catenin, and possibly begin to address how dysfunction of Dyrk1A with respect to p120-catenin might relate to aspects of Down syndrome. In summary, the second phase of my graduate work appears to have revealed a novel aspect of Dyrk1A/p120-catenin action in embryonic development, with a functional linkage to canonical Wnt signaling. What I have identified as a “Dyrk1A/p120-catenin/Kaiso pathway” may conceivably assist in our larger understanding of the impact of Dyrk1A dosage imbalance in Down syndrome.
Resumo:
Children with severe emotional problems often have multiple needs that require disparate services including child welfare, juvenile justice, health, mental health, substance abuse, and mental retardation (Stroul, 1996). However, the primary care giving responsibilities for these youngsters still remain with their families. It is the family who shelters and clothes them; provides guidance, affection, recreation, nurturing; gets them to appointments with doctors and therapists and to school dayin- and-day-out, year after year (Lourie, 1995). Despite the invaluable and irreplaceable care provided by families, they are often maligned by a system which characterizes them as having their own problems and inadequacies. The purpose of this research is to learn more about the strengths of families who care for children with severe emotional disabilities (SED). This exploratory descriptive study made use of focus groups attended by parents who are caring for such children. In order to improve services to these families, it is important that we understand how the notion of strengths play out in their everyday lives. Observations are made about the care giving plan, which all families devise in the course of caring for their child with special needs. Implications for paid professionals who serve these families are offered by presenting a model for putting family care givers at the hub of the service provision wheel.
Resumo:
Nephroblastoma or Wilms' tumor is a pediatric renal malignancy that is the most frequently occurring childhood solid tumor. Approximately 1-2% of children with Wilms' tumor also present with aniridia, a congenital absence of all or part of the iris of the eye. These children also have high rates of genitourinary anomalies and mental retardation resulting in what is called the WAGR (Wilms' tumor, aniridia, genitourinary anomaly, mental retardation) syndrome. Cytogenetic analysis of metaphase chromosomes from these patients revealed a consistent deletion of band P13 on chromosome 11. These observations suggest close physical linkage between the disease-related loci, and further imply that development of each phenotype results from the loss of normal gene function.^ The objective of this work is to understand the molecular events at chromosome band 11p13 that are essential to the development of sporadic Wilms' tumor and sporadic aniridia. Two human/hamster somatic cell hybrids have been used to identify sixteen independent DNA probes that map to this segment of the human genome. These newly identified DNA probes and four previously reported probes (CAT, FSHB, D11S16, and HBVIS) have been used to subdivide 11p13 into five intervals defined by overlapping constitutional deletions from several WAGR patients. A long-range physical map of 11p13 has been constructed using each of these probes in Southern blot analysis of genomic DNA after digestion with infrequently cutting restriction enzymes and pulse-field gel electrophoresis. This map, established primarily with MluI and NotI, spans approximately 13 $\times$ 10$\sp{6}$ bp and encompasses deletion and translocation breakpoints associated with genitourinary anomalies, aniridia, and sporadic Wilms' tumor. This complete physical map of human chromosome band 11p13 enables us to localize the genes for sporadic Wilms' tumor and sporadic aniridia to a small number of specific NotI fragments. ^
Resumo:
A polymorphous variant of oligodendroglioma was described by K.J. Zülch half a century ago, and is only very sporadically referred to in the subsequent literature. In particular, no comprehensive analysis with respect to clinical or genetic features of these tumors is available. From a current perspective, the term polymorphous oligodendroglioma (pO) may appear as contradictory in terms, as nuclear monotony is a histomorphological hallmark of oligodendrogliomas. For the purpose of this study, we defined pO as diffusely infiltrating gliomas felt to be of oligodendroglial rather than astrocytic differentiation and characterized by the presence of multinucleate tumor giant cells and/or nuclear pleomorphism. In a total of nine patients, we identified tumors consistent with this working definition. All tumors were high-grade. We characterized these with respect to clinical, histomorphological and genetic features. Despite clinical and genetic heterogeneity, we identified a subset of tumors of bona fide oligodendroglial differentiation as characterized by combined loss of heterozygosity of chromosome arms 1p and 19q (LOH 1p19q). Those tumors that lacked LOH 1p19q showed a high frequency of IDH1 mutations and loss of alpha thalassemia/mental retardation syndrome X-linked gene (ATRX) immunoreactivity, indicating a possible phenotypic convergence of true oligodendrogliomas and gliomas of the alternative lengthening of telomeres (ALT) pathway. p53 alterations were common irrespective of the 1p19q status. Histomorphologically, the tumors featured interspersed bizarre multinucleate giant tumor cells, while the background population varied from monotonous to significantly pleomorphic. Our findings indicate, that a rare polymorphous - or "giant cell" - variant of oligodendroglioma does indeed exist.
Resumo:
Dandy-Walker-like malformation (DWLM) is the result of aberrant brain development and mainly characterized by cerebellar hypoplasia. DWLM affected dogs display a non-progressive cerebellar ataxia. Several DWLM cases were recently observed in the Eurasier dog breed, which strongly suggested a monogenic autosomal recessive inheritance in this breed. We performed a genome-wide association study (GWAS) with 9 cases and 11 controls and found the best association of DWLM with markers on chromosome 1. Subsequent homozygosity mapping confirmed that all 9 cases were homozygous for a shared haplotype in this region, which delineated a critical interval of 3.35 Mb. We sequenced the genome of an affected Eurasier and compared it with the Boxer reference genome and 47 control genomes of dogs from other breeds. This analysis revealed 4 private non-synonymous variants in the critical interval of the affected Eurasier. We genotyped these variants in additional dogs and found perfect association for only one of these variants, a single base deletion in the VLDLR gene encoding the very low density lipoprotein receptor. This variant, VLDLR:c.1713delC is predicted to cause a frameshift and premature stop codon (p.W572Gfs*10). Variants in the VLDLR gene have been shown to cause congenital cerebellar ataxia and mental retardation in human patients and Vldlr knockout mice also display an ataxia phenotype. Our combined genetic data together with the functional knowledge on the VLDLR gene from other species thus strongly suggest that VLDLR:c.1713delC is indeed causing DWLM in Eurasier dogs.
Resumo:
Individuals with intellectual disabilities (ID) often struggle with learning how to read. Reading difficulties seem to be the most common secondary condition of ID. Only one in five children with mild or moderate ID achieves even minimal literacy skills. However, literacy education for children and adolescents with ID has been largely overlooked by researchers and educators. While there is little research on reading of children with ID, many training studies have been conducted with other populations with reading difficulties. The most common approach of acquiring literacy skills consists of sophisticated programs that train phonological skills and auditory perception. Only few studies investigated the influence of implicit learning on literacy skills. Implicit learning processes seem to be largely independent of age and IQ. Children are sensitive to the statistics of their learning environment. By frequent word reading they acquire implicit knowledge about the frequency of single letters and letter patterns in written words. Additionally, semantic connections not only improve the word understanding, but also facilitate storage of words in memory. Advances in communication technology have introduced new possibilities for remediating literacy skills. Computers can provide training material in attractive ways, for example through animations and immediate feedback .These opportunities can scaffold and support attention processes central to learning. Thus, the aim of this intervention study was to develop and implement a computer based word-picture training, which is based on statistical and semantic learning, and to examine the training effects on reading, spelling and attention in children and adolescents (9-16 years) diagnosed with mental retardation (general IQ 74). Fifty children participated in four to five weekly training sessions of 15-20 minutes over 4 weeks, and completed assessments of attention, reading, spelling, short-term memory and fluid intelligence before and after training. After a first assessment (T1), the entire sample was divided in a training group (group A) and a waiting control group (group B). After 4 weeks of training with group A, a second assessment (T2) was administered with both training groups. Afterwards, group B was trained for 4 weeks, before a last assessment (T3) was carried out in both groups. Overall, the results showed that the word-picture training led to substantial gains on word decoding and attention for both training groups. These effects were preserved six weeks later (group A). There was also a clear tendency of improvement in spelling after training for both groups, although the effect did not reach significance. These findings highlight the fact that an implicit statistical learning training in a playful way by motivating computer programs can not only promote reading development, but also attention in children with intellectual disabilities.
Resumo:
Fucosidosis is a rare lysosomal storage disease. A 14-year-old girl is presented, with recurrent infections, progressive dystonic movement disorder and mental retardation with onset in early childhood. The clinical picture was also marked by mild morphologic features, but absent dysostosis multiplex and organomegaly. MRI images at 6.5 years of age were reminiscent of pallidal iron deposition ("eye-of-the-tiger" sign) seen in neurodegeneration with brain iron accumulation (NBIA) disorders. Progressively spreading angiokeratoma corporis diffusum led to the correct diagnosis. This case extends the scope of clinical and neuroradiological manifestations of fucosidosis.