723 resultados para Meningitis, Cerebrospinal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies have suggested that the scavenger receptor MARCO (macrophage receptor with collagenous structure) mediates activation of the immune response in bacterial infection of the central nervous system (CNS). The chemotactic G-protein-coupled receptor (GPCR) formyl-peptide-receptor like-1 (FPRL1) plays an essential role in the inflammatory responses of host defence mechanisms and neurodegenerative disorders such as Alzheimer's disease (AD). Expression of the antimicrobial peptide cathelicidin CRAMP/LL-37 is up-regulated in bacterial meningitis, but the mechanisms underlying CRAMP expression are far from clear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypocretins (orexins) are hypothalamic neuropeptides which are involved in a wide range of physiological processes in mammals including central pain processing. Genetic studies in humans evidenced a role for the hypocretinergic system in cluster headache (CH).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epidural blood patch (EBP) is one therapeutic measure for patients suffering from spontaneous intracranial hypotension (SIH) or post-lumbar puncture headaches. It has been proposed that an EBP may directly seal a spinal cerebrospinal fluid (CSF) fistula or result in an increase in intracranial pressure (ICP) by a shift of CSF from the spinal to the intracranial compartment. To the best of our knowledge this is the first case of a patient with SIH and neurological deterioration in whom ICP was measured before, during, and after spinal EBP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 2-year-old, female goat from Connecticut was submitted for necropsy with a 5-day history of pyrexia and intermittent neurologic signs, including nystagmus, seizures, and circling. Postmortem examination revealed suppurative meningitis. Histologic examination of the brain revealed that the meninges were diffusely infiltrated by moderate numbers of lymphocytes, macrophages, and fibrin, with scattered foci of dense neutrophilic infiltrate. Culture of pus and brainstem yielded typical mycoplasma colonies. DNA sequencing of the 16S ribosomal RNA gene revealed 99% sequence homology with Mycoplasma mycoides subspecies capri and Mycoplasma mycoides subspecies mycoides Large Colony biotype, which are genetically indistinguishable and likely to be combined as a single subspecies labeled M. mycoides subsp. capri. The present case is unusual in that not only are mycoplasma an uncommon cause of meningitis in animals, but additionally, in that all other reported cases of mycoplasma meningitis in goats, systemic lesions were also present. In the present case, meningitis was the only lesion, thus illustrating the need to consider mycoplasma as a differential diagnosis for meningitis in goats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pathology associated with Streptococcus pneumoniae meningitis results largely from activation of immune-associated pathways. We systematically investigated the production of IFN subtypes, as well as their influence on pathology, in a mouse model of S. pneumoniae meningitis. Despite the occurrence of a mixed IFN type I/II gene signature, no evidence for production or involvement of type I IFNs in disease progression was found. In contrast, type II IFN (IFN-γ) was strongly induced, and IFN-γ(-/-) mice were significantly protected from severe disease. Using intracellular cytokine staining and targeted cell-depletion approaches, NK cells were found to be the dominant source of IFN-γ. Furthermore, production of IFN-γ was found to be dependent upon ASC and IL-18, indicating that an ASC-dependent inflammasome pathway was responsible for mediating IFN-γ induction. The influence of IFN-γ gene deletion on a range of processes known to be involved in bacterial meningitis pathogenesis was examined. Although neutrophil numbers in the brain were similar in infected wild-type and IFN-γ(-/-) mice, both monocyte recruitment and CCL2 production were less in infected IFN-γ(-/-) mice compared with infected wild-type controls. Additionally, gene expression of NO synthase was strongly diminished in infected IFN-γ(-/-) mice compared with infected controls. Finally, bacterial clearance was enhanced in IFN-γ(-/-) mice, although the underlying mechanism remains unclear. Together, these data suggest that inflammasome-dependent IFN-γ contributes via multiple pathways to pathology during S. pneumoniae meningitis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacterial meningitis (BM) frequently causes persisting neurofunctional sequelae. Autopsy studies in patients dying from BM show characteristic apoptotic brain injury to the stem cell niche in the subgranular zone of the hippocampal dentate gyrus (DG), and this form of brain damage is associated with learning and memory deficits in experimental BM. With an eye to potential regenerative therapies, the survival, migration, and differentiation of neuronal precursor cells (NPCs) were evaluated after engraftment into the injured hippocampus in vitro and in vivo in an infant rat model of pneumococcal meningitis. Green fluorescent protein (GFP)-expressing NPCs were grafted into the DG of organotypic hippocampal slice cultures injured by challenge with live Streptococcus pneumoniae. Seven days after engraftment, NPCs had migrated from the site of injection into the injured granular layer of the DG and electro-functionally integrated into the hippocampal network. In vivo, GFP-expressing NPCs migrated within 1 week from the injection site in the hilus region to the injured granular layer of the hippocampal DG and showed neuronal differentiation at 2 and 4 weeks after transplantation. Hippocampal injury induced by BM guides grafted NPCs to the area of brain damage and provides a microenvironment for neuronal differentiation and functional integration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The central nervous system (CNS) has long been regarded as an immune privileged organ implying that the immune system avoids the CNS to not disturb its homeostasis, which is critical for proper function of neurons. Meanwhile, it is accepted that immune cells do in fact gain access to the CNS and that immune responses can be mounted within this tissue. However, the unique CNS microenvironment strictly controls these immune reactions starting with tightly controlling immune cell entry into the tissue. The endothelial blood-brain barrier (BBB) and the epithelial blood-cerebrospinal fluid (CSF) barrier, which protect the CNS from the constantly changing milieu within the bloodstream, also strictly control immune cell entry into the CNS. Under physiological conditions, immune cell migration into the CNS is kept at a very low level. In contrast, during a variety of pathological conditions of the CNS such as viral or bacterial infections, or during inflammatory diseases such as multiple sclerosis, immunocompetent cells readily traverse the BBB and likely also the choroid plexus and subsequently enter the CNS parenchyma or CSF spaces. This chapter summarizes our current knowledge of immune cell entry across the blood CNS barriers. A large body of the currently available information on immune cell entry into the CNS has been derived from studying experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. Therefore, most of this chapter discussing immune cell entry during CNS pathogenesis refers to observations in the EAE model, allowing for the possibility that other mechanisms of immune cell entry into the CNS might apply under different pathological conditions such as bacterial meningitis or stroke.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cerebrospinal fluid (CSF) shunts carry a high risk of complications. Infections represent a major cause of shunt failure. Diagnosis and therapy of such infections are complicated by the formation of bacterial biofilms attached to shunt surfaces. This study correlated the pathophysiology and clinical course of biofilm infections with microscopical findings on the respective shunts. Surface irregularities, an important risk-factor for shunt colonisation with bacteria, were found to increase over time because of silicone degradation. Scanning electron-microscopy (SEM) documented residual biological material (dead biofilm), which can further promote extant bacterial adhesion, on newly manufactured shunts. Clinical course and SEM both documented bacterial dissemination against CSF flow and the monodirectional valve. In all cases, biofilms grew on both the inner and outer surfaces of the shunts. Microscopy and conventional culture detected all bacterial shunt infections. Analyses of 16S rDNA sequences using conserved primers identified bacteria in only one of three cases, probably because of previous formalin fixation of the samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to investigate differences in concentrations of vitamin A, transthyretin (TTR) and retinol-binding protein (RBP) between plasma and cerebrospinal fluid (CSF) in dogs. RBP was detected using ELISA, and both RBP and TTR by Western blot analysis after separation on SDS-PAGE. Vitamin A was determined by high performance liquid chromatography. RBP and TTR as well as vitamin A were detected in all samples but at substantially lower concentrations in CSF compared to plasma. RBP in dog plasma showed a similar molecular mass to that of humans, whereas canine TTR had a lower molecular mass. Comparison between plasma and CSF showed that both RBP and TTR were of lower molecular mass in CSF. In CSF, RBP and retinol were present at 10-100-fold lower concentrations compared to plasma. Retinyl esters were present only in minute amounts in 5/17 samples. In conclusion, the CSF of dogs compared to humans is significantly different in terms of both quality and quantity of transport proteins for vitamin A.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: To test the efficacy of daptomycin, a cyclic lipopeptide antibiotic, against a methicillin-susceptible Staphylococcus aureus strain in experimental rabbit meningitis and to determine its penetration into non-inflamed and inflamed meninges RESULTS: Over a treatment period of 8 h, daptomycin (15 mg/kg) was significantly superior to the comparator regimen vancomycin (-4.54 +/- 1.12 log(10)/mL for daptomycin versus -3.43 +/- 1.17 log(10)/mL for vancomycin). Daptomycin managed to sterilize 6 out of 10 CSFs compared with 4 out of 10 for vancomycin. The penetration of daptomycin into inflamed meninges was approximately 5% and approximately 2% into non-inflamed meninges. CONCLUSIONS: The superior bactericidal activity of daptomycin was confirmed in vivo and in time-killing assays in vitro.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The penetration of telavancin was 2% into inflamed meninges and ca. 1 per thousand into noninflamed meninges after two intravenous injections (30 mg/kg of body weight). In experimental meningitis, telavancin was significantly superior to vancomycin combined with ceftriaxone against a penicillin-resistant pneumococcal strain. Against a methicillin-sensitive staphylococcal strain, telavancin was slightly but not significantly superior to vancomycin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adverse outcome in bacterial meningitis is associated with the breakdown of the blood-brain barrier (BBB). Matrix-metalloproteinases (MMPs) facilitate this process by degradation of components of the BBB. This in turn results in acute complications of bacterial meningitis including edema formation, increased intracranial pressure and subsequent ischemia. We determined the parenchymal balance of MMP-9 and TIMP-1 (tissue inhibitor of MMP) and the structural integrity of the BBB in relation to cortical damage in an infant rat model of pneumococcal meningitis. The data demonstrate that the extent of cortical damage is significantly associated with parenchymal gelatinolytic activity and collagen type IV degradation. The increased gelatinolysis was found to be associated with a brain parenchymal imbalance of MMP-9/TIMP-1. These findings provide support to the concept that MMPs mediated disruption of the BBB contributes to the pathogenesis of bacterial meningitis and that protection of the vascular unit may have neuroprotective potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Desferrioxamine inhibits cortical necrosis in neonatal rats with experimental pneumococcal meningitis, suggesting that iron-induced oxidative damage might be responsible for neuronal damage. We therefore examined the spatial and temporal profile of changes in cortical iron and iron homeostatic proteins during pneumococcal meningitis. Infection was associated with a steady and global increase of non-haem iron in the cortex, particularly in neuronal cell bodies of layer II and V, and in capillary endothelial cells. The non-haem iron increase was associated with induction of haem oxygenase (HO)-1 in neurones, microglia and capillary endothelial cells, whereas HO-2 levels remained unchanged, suggesting that the non-haem iron increase might be the result of HO-1-mediated haem degradation. Indeed, treatment with the haem oxygenase inhibitor tin protoporphyrin (which completely blocked the accumulation of bilirubin detected in HO-1-positive cells) completely prevented the infection-associated non-haem iron increase. The same cells also displayed markedly increased ferritin staining, the increase of which occurred independently of HO activity. At the same time, no increase in DNA/RNA oxidation was observed in infected animals (as assessed by in situ detection of 8-hydroxy[deoxy]guanosine), strongly suggesting that ferritin up-regulation protected the brain from iron-induced oxidative damage. Thus, although pneumococcal meningitis leads to an increase of cortical non-haem iron, protective mechanisms up-regulated in parallel prevent iron-induced oxidative damage. Cortical damage does not appear to be a direct consequence of increased iron, therefore.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pneumococcal meningitis (PM) is characterized by an intense inflammatory host reaction that contributes to the development of cortical necrosis and hippocampal apoptosis. Inflammatory conditions in the brain are known to induce tryptophan degradation along the kynurenine pathway, resulting in accumulation of neurotoxic metabolites. In the present study, we investigated the contribution of the kynurenine pathway to brain injury in experimental PM by measuring the concentration of its metabolites and the enzymatic activities and mRNA levels of its major enzymes in the vulnerable brain regions. In the late phase of acute PM, we found a significant transcriptional upregulation of kynurenine-3-hydroxylase and an accumulation of the neurotoxic metabolites 3-hydroxykynurenine (3-HKYN) and 3-hydroxyanthranilic acid in cortex and hippocampus. The positive correlation between the concentration of 3-HKYN and the extent of hippocampal apoptosis adds support to the concept that 3-HKYN contributes to brain injury in PM.