997 resultados para Medical microscopy
Resumo:
Search technologies are critical to enable clinical sta to rapidly and e ectively access patient information contained in free-text medical records. Medical search is challenging as terms in the query are often general but those in rel- evant documents are very speci c, leading to granularity mismatch. In this paper we propose to tackle granularity mismatch by exploiting subsumption relationships de ned in formal medical domain knowledge resources. In symbolic reasoning, a subsumption (or `is-a') relationship is a parent-child rela- tionship where one concept is a subset of another concept. Subsumed concepts are included in the retrieval function. In addition, we investigate a number of initial methods for combining weights of query concepts and those of subsumed concepts. Subsumption relationships were found to provide strong indication of relevant information; their inclusion in retrieval functions yields performance improvements. This result motivates the development of formal models of rela- tionships between medical concepts for retrieval purposes.
Resumo:
The Australian e-Health Research Centre and Queensland University of Technology recently participated in the TREC 2012 Medical Records Track. This paper reports on our methods, results and experience using an approach that exploits the concept and inter-concept relationships defined in the SNOMED CT medical ontology. Our concept-based approach is intended to overcome specific challenges in searching medical records, namely vocabulary mismatch and granularity mismatch. Queries and documents are transformed from their term-based originals into medical concepts as defined by the SNOMED CT ontology, this is done to tackle vocabulary mismatch. In addition, we make use of the SNOMED CT parent-child `is-a' relationships between concepts to weight documents that contained concept subsumed by the query concepts; this is done to tackle the problem of granularity mismatch. Finally, we experiment with other SNOMED CT relationships besides the is-a relationship to weight concepts related to query concepts. Results show our concept-based approach performed significantly above the median in all four performance metrics. Further improvements are achieved by the incorporation of weighting subsumed concepts, overall leading to improvement above the median of 28% infAP, 10% infNDCG, 12% R-prec and 7% Prec@10. The incorporation of other relations besides is-a demonstrated mixed results, more research is required to determined which SNOMED CT relationships are best employed when weighting related concepts.
Resumo:
This paper outlines a novel approach for modelling semantic relationships within medical documents. Medical terminologies contain a rich source of semantic information critical to a number of techniques in medical informatics, including medical information retrieval. Recent research suggests that corpus-driven approaches are effective at automatically capturing semantic similarities between medical concepts, thus making them an attractive option for accessing semantic information. Most previous corpus-driven methods only considered syntagmatic associations. In this paper, we adapt a recent approach that explicitly models both syntagmatic and paradigmatic associations. We show that the implicit similarity between certain medical concepts can only be modelled using paradigmatic associations. In addition, the inclusion of both types of associations overcomes the sensitivity to the training corpus experienced by previous approaches, making our method both more effective and more robust. This finding may have implications for researchers in the area of medical information retrieval.
Resumo:
Background & Aims: Inadequate feeding assistance and mealtime interruptions during hospitalisation may contribute to malnutrition and poor nutritional intake in older people. This study aimed to implement and compare three interventions designed to specifically address mealtime barriers and improve energy intakes of medical inpatients aged ≥65 years. Methods: Pre-post study compared three mealtime assistance interventions: PM: Protected Mealtimes with multidisciplinary education; AIN: additional assistant-in-nursing (AIN) with dedicated meal role; PM+AIN: combined intervention. Dietary intake of 254 patients (pre: n=115, post: n=141; mean age 80±8) was visually estimated on a single day in the first week of hospitalisation and compared with estimated energy requirements. Assistance activities were observed and recorded. Results: Mealtime assistance levels significantly increased in all interventions (p<0.01). Post-intervention participants were more likely to achieve adequate energy intake (OR=3.4, p=0.01), with no difference noted between interventions (p=0.29). Patients with cognitive impairment or feeding dependency appeared to gain substantial benefit from mealtime assistance interventions. Conclusions: Protected Mealtimes and additional AIN assistance (implemented alone or in combination) may produce modest improvements in nutritional intake. Targeted feeding assistance for certain patient groups holds promise; however, alternative strategies are required to address the complex problem of malnutrition in this population.
Resumo:
One of the next great challenges of cell biology is the determination of the enormous number of protein structures encoded in genomes. In recent years, advances in electron cryo-microscopy and high-resolution single particle analysis have developed to the point where they now provide a methodology for high resolution structure determination. Using this approach, images of randomly oriented single particles are aligned computationally to reconstruct 3-D structures of proteins and even whole viruses. One of the limiting factors in obtaining high-resolution reconstructions is obtaining a large enough representative dataset ($>100,000$ particles). Traditionally particles have been manually picked which is an extremely labour intensive process. The problem is made especially difficult by the low signal-to-noise ratio of the images. This paper describes the development of automatic particle picking software, which has been tested with both negatively stained and cryo-electron micrographs. This algorithm has been shown to be capable of selecting most of the particles, with few false positives. Further work will involve extending the software to detect differently shaped and oriented particles.
Resumo:
An important component of current models for interstellar and circumstellar evolution is the infrared (IR)spectral data collected from stellar outflows around oxygen-rich stars and from the general interstellar medium [1]. IR spectra from these celestial bodies are usually interpreted as showing the general properties of sub-micron sized silicate grains [2]. Two major features at 10 and 20 microns are reasonably attributed to amorphous olivine or pyroxene (e.g. Mg2Si04 or MgSi03) on the basis of comparisons with natural standards and vapor condensed silicates [3-6]. In an attempt to define crystallisation rates for spectrally amorphous condensates, Nuth and Donn [5] annealed experimentally produced amorphous magnesium silicate smokes at 1000K. On analysing these smokes at various annealing times, Nuth and Donn [5] showed that changes in crystallinity measured by bulk X-ray diffraction occured at longer annealing times (days) than changes measured by IR spectra (a few hours). To better define the onset of crystallinity in these magnesium silicates, we have examined each annealed product using a JEOL 1OOCX analytical electron microscope (AEM). In addition, the development of chemical diversity with annealing has been monitored using energy dispersive spectroscopy of individual grains from areas <20nm in diameter. Furthermore, the crystallisation kinetics of these smokes under ambient, room temperature conditions have been examined using bulk and fourier transform infrared (FTIR)spectra.