983 resultados para Medical Informatics Computing


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract Reputation, influenced by ratings from past clients, is crucial for providers competing for custom. For new providers with less track record, a few negative ratings can harm their chances of growing. In the JASPR project, we aim to look at how to ensure automated reputation assessments are justified and informative. Even an honest balanced review of a service provision may still be an unreliable predictor of future performance if the circumstances differ. For example, a service may have previously relied on different sub-providers to now, or been affected by season-specific weather events. A common way to ameliorate the ratings that may not reflect future performance is by weighting by recency. We argue that better results are obtained by querying provenance records on how services are provided for the circumstances of provision, to determine the significance of past interactions. Informed by case studies in global logistics, taxi hire, and courtesy car leasing, we are going on to explore the generation of explanations for reputation assessments, which can be valuable both for clients and for providers wishing to improve their match to the market, and applying machine learning to predict aspects of service provision which may influence decisions on the appropriateness of a provider. In this talk, I will give an overview of the research conducted and planned on JASPR. Speaker Biography Dr Simon Miles Simon Miles is a Reader in Computer Science at King's College London, UK, and head of the Agents and Intelligent Systems group. He conducts research in the areas of normative systems, data provenance, and medical informatics at King's, and has published widely and manages a number of research projects in these areas. He was previously a researcher at the University of Southampton after graduating from his PhD at Warwick. He has twice been an organising committee member for the Autonomous Agents and Multi-Agent Systems conference series, and was a member of the W3C working group which published standards on interoperable provenance data in 2013.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: The Analytic Hierarchy Process (AHP), developed by Saaty in the late 1970s, is one of the methods for multi-criteria decision making. The AHP disaggregates a complex decision problem into different hierarchical levels. The weight for each criterion and alternative are judged in pairwise comparisons and priorities are calculated by the Eigenvector method. The slowly increasing application of the AHP was the motivation for this study to explore the current state of its methodology in the healthcare context. Methods: A systematic literature review was conducted by searching the Pubmed and Web of Science databases for articles with the following keywords in their titles or abstracts: "Analytic Hierarchy Process," "Analytical Hierarchy Process," "multi-criteria decision analysis," "multiple criteria decision," "stated preference," and "pairwise comparison." In addition, we developed reporting criteria to indicate whether the authors reported important aspects and evaluated the resulting studies' reporting. Results: The systematic review resulted in 121 articles. The number of studies applying AHP has increased since 2005. Most studies were from Asia (almost 30 %), followed by the US (25.6 %). On average, the studies used 19.64 criteria throughout their hierarchical levels. Furthermore, we restricted a detailed analysis to those articles published within the last 5 years (n = 69). The mean of participants in these studies were 109, whereas we identified major differences in how the surveys were conducted. The evaluation of reporting showed that the mean of reported elements was about 6.75 out of 10. Thus, 12 out of 69 studies reported less than half of the criteria. Conclusion: The AHP has been applied inconsistently in healthcare research. A minority of studies described all the relevant aspects. Thus, the statements in this review may be biased, as they are restricted to the information available in the papers. Hence, further research is required to discover who should be interviewed and how, how inconsistent answers should be dealt with, and how the outcome and stability of the results should be presented. In addition, we need new insights to determine which target group can best handle the challenges of the AHP. © 2015 Schmidt et al.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Inter-subject parcellation of functional Magnetic Resonance Imaging (fMRI) data based on a standard General Linear Model (GLM) and spectral clustering was recently proposed as a means to alleviate the issues associated with spatial normalization in fMRI. However, for all its appeal, a GLM-based parcellation approach introduces its own biases, in the form of a priori knowledge about the shape of Hemodynamic Response Function (HRF) and task-related signal changes, or about the subject behaviour during the task. In this paper, we introduce a data-driven version of the spectral clustering parcellation, based on Independent Component Analysis (ICA) and Partial Least Squares (PLS) instead of the GLM. First, a number of independent components are automatically selected. Seed voxels are then obtained from the associated ICA maps and we compute the PLS latent variables between the fMRI signal of the seed voxels (which covers regional variations of the HRF) and the principal components of the signal across all voxels. Finally, we parcellate all subjects data with a spectral clustering of the PLS latent variables. We present results of the application of the proposed method on both single-subject and multi-subject fMRI datasets. Preliminary experimental results, evaluated with intra-parcel variance of GLM t-values and PLS derived t-values, indicate that this data-driven approach offers improvement in terms of parcellation accuracy over GLM based techniques.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Errors in the decision-making process are probably the main threat to patient safety in the prehospital setting. The reason can be the change of focus in prehospital care from the traditional "scoop and run" practice to a more complex assessment and this new focus imposes real demands on clinical judgment. The use of Clinical Guidelines (CG) is a common strategy for cognitively supporting the prehospital providers. However, there are studies that suggest that the compliance with CG in some cases is low in the prehospital setting. One possible way to increase compliance with guidelines could be to introduce guidelines in a Computerized Decision Support System (CDSS). There is limited evidence relating to the effect of CDSS in a prehospital setting. The present study aimed to evaluate the effect of CDSS on compliance with the basic assessment process described in the prehospital CG and the effect of On Scene Time (OST). METHODS: In this time-series study, data from prehospital medical records were collected on a weekly basis during the study period. Medical records were rated with the guidance of a rating protocol and data on OST were collected. The difference between baseline and the intervention period was assessed by a segmented regression. RESULTS: In this study, 371 patients were included. Compliance with the assessment process described in the prehospital CG was stable during the baseline period. Following the introduction of the CDSS, compliance rose significantly. The post-intervention slope was stable. The CDSS had no significant effect on OST. CONCLUSIONS: The use of CDSS in prehospital care has the ability to increase compliance with the assessment process of patients with a medical emergency. This study was unable to demonstrate any effects of OST.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

SIN FINANCIACIÓN

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objetivo: Identificar las barreras para la unificación de una Historia Clínica Electrónica –HCE- en Colombia. Materiales y Métodos: Se realizó un estudio cualitativo. Se realizaron entrevistas semiestructuradas a profesionales y expertos de 22 instituciones del sector salud, de Bogotá y de los departamentos de Cundinamarca, Santander, Antioquia, Caldas, Huila, Valle del Cauca. Resultados: Colombia se encuentra en una estructuración para la implementación de la Historia Clínica Electrónica Unificada -HCEU-. Actualmente, se encuentra en unificación en 42 IPSs públicas en el departamento de Cundinamarca, el desarrollo de la HCEU en el país es privado y de desarrollo propio debido a las necesidades particulares de cada IPS. Conclusiones: Se identificaron barreras humanas, financieras, legales, organizacionales, técnicas y profesionales en los departamentos entrevistados. Se identificó que la unificación de la HCE depende del acuerdo de voluntades entre las IPSs del sector público, privado, EPSs, y el Gobierno Nacional.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The physics of plasmas encompasses basic problems from the universe and has assured us of promises in diverse applications to be implemented in a wider range of scientific and engineering domains, linked to most of the evolved and evolving fundamental problems. Substantial part of this domain could be described by R–D mechanisms involving two or more species (reaction–diffusion mechanisms). These could further account for the simultaneous non-linear effects of heating, diffusion and other related losses. We mention here that in laboratory scale experiments, a suitable combination of these processes is of vital importance and very much decisive to investigate and compute the net behaviour of plasmas under consideration. Plasmas are being used in the revolution of information processing, so we considered in this technical note a simple framework to discuss and pave the way for better formalisms and Informatics, dealing with diverse domains of science and technologies. The challenging and fascinating aspects of plasma physics is that it requires a great deal of insight in formulating the relevant design problems, which in turn require ingenuity and flexibility in choosing a particular set of mathematical (and/or experimental) tools to implement them.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Antimicrobial drugs may be used to treat diarrheal illness in companion animals. It is important to monitor antimicrobial use to better understand trends and patterns in antimicrobial resistance. There is no monitoring of antimicrobial use in companion animals in Canada. To explore how the use of electronic medical records could contribute to the ongoing, systematic collection of antimicrobial use data in companion animals, anonymized electronic medical records were extracted from 12 participating companion animal practices and warehoused at the University of Calgary. We used the pre-diagnostic, clinical features of diarrhea as the case definition in this study. Using text-mining technologies, cases of diarrhea were described by each of the following variables: diagnostic laboratory tests performed, the etiological diagnosis and antimicrobial therapies. The ability of the text miner to accurately describe the cases for each of the variables was evaluated. It could not reliably classify cases in terms of diagnostic tests or etiological diagnosis; a manual review of a random sample of 500 diarrhea cases determined that 88/500 (17.6%) of the target cases underwent diagnostic testing of which 36/88 (40.9%) had an etiological diagnosis. Text mining, compared to a human reviewer, could accurately identify cases that had been treated with antimicrobials with high sensitivity (92%, 95% confidence interval, 88.1%-95.4%) and specificity (85%, 95% confidence interval, 80.2%-89.1%). Overall, 7400/15,928 (46.5%) of pets presenting with diarrhea were treated with antimicrobials. Some temporal trends and patterns of the antimicrobial use are described. The results from this study suggest that informatics and the electronic medical records could be useful for monitoring trends in antimicrobial use.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Managing large medical image collections is an increasingly demanding important issue in many hospitals and other medical settings. A huge amount of this information is daily generated, which requires robust and agile systems. In this paper we present a distributed multi-agent system capable of managing very large medical image datasets. In this approach, agents extract low-level information from images and store them in a data structure implemented in a relational database. The data structure can also store semantic information related to images and particular regions. A distinctive aspect of our work is that a single image can be divided so that the resultant sub-images can be stored and managed separately by different agents to improve performance in data accessing and processing. The system also offers the possibility of applying some region-based operations and filters on images, facilitating image classification. These operations can be performed directly on data structures in the database.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Low resources in many African locations do not allow many African scientists and physicians to access the latest advances in technology. This deficiency hinders the daily life of African professionals that often cannot afford, for instance, the cost of internet fees or software licenses. The AFRICA BUILD project, funded by the European Commission and formed by four European and four African institutions, intends to provide advanced computational tools to African institutions in order to solve current technological limitations. In the context of AFRICA BUILD we have carried out, a series of experiments to test the feasibility of using Cloud Computing technologies in two different locations in Africa: Egypt and Burundi. The project aims to create a virtual platform to provide access to a wide range of biomedical informatics and learning resources to professionals and researchers in Africa.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Computing and information technology have made significant advances. The use of computing and technology is a major aspect of our lives, and this use will only continue to increase in our lifetime. Electronic digital computers and high performance communication networks are central to contemporary information technology. The computing applications in a wide range of areas including business, communications, medical research, transportation, entertainments, and education are transforming local and global societies around the globe. The rapid changes in the fields of computing and information technology also make the study of ethics exciting and challenging, as nearly every day, the media report on a new invention, controversy, or court ruling. This tutorial will explore a broad overview on the scientific foundations, technological advances, social implications, and ethical and legal issues related to computing. It will provide the milestones in computing and in networking, social context of computing, professional and ethical responsibilities, philosophical frameworks, and social, ethical, historical, and political implications of computer and information technology. It will outline the impact of the tremendous growth of computer and information technology on people, ethics and law. Political and legal implications will become clear when we analyze how technology has outpaced the legal and political arenas.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This dissertation presents and evaluates a methodology for scheduling medical application workloads in virtualized computing environments. Such environments are being widely adopted by providers of "cloud computing" services. In the context of provisioning resources for medical applications, such environments allow users to deploy applications on distributed computing resources while keeping their data secure. Furthermore, higher level services that further abstract the infrastructure-related issues can be built on top of such infrastructures. For example, a medical imaging service can allow medical professionals to process their data in the cloud, easing them from the burden of having to deploy and manage these resources themselves. In this work, we focus on issues related to scheduling scientific workloads on virtualized environments. We build upon the knowledge base of traditional parallel job scheduling to address the specific case of medical applications while harnessing the benefits afforded by virtualization technology. To this end, we provide the following contributions: (1) An in-depth analysis of the execution characteristics of the target applications when run in virtualized environments. (2) A performance prediction methodology applicable to the target environment. (3) A scheduling algorithm that harnesses application knowledge and virtualization-related benefits to provide strong scheduling performance and quality of service guarantees. In the process of addressing these pertinent issues for our target user base (i.e. medical professionals and researchers), we provide insight that benefits a large community of scientific application users in industry and academia. Our execution time prediction and scheduling methodologies are implemented and evaluated on a real system running popular scientific applications. We find that we are able to predict the execution time of a number of these applications with an average error of 15%. Our scheduling methodology, which is tested with medical image processing workloads, is compared to that of two baseline scheduling solutions and we find that it outperforms them in terms of both the number of jobs processed and resource utilization by 20–30%, without violating any deadlines. We conclude that our solution is a viable approach to supporting the computational needs of medical users, even if the cloud computing paradigm is not widely adopted in its current form.