536 resultados para Medialis obliquus
Resumo:
Planktonic foraminifers were studied from 213 samples collected during Leg 112 at 10 sites located on the continental shelf and slope off Peru. Because planktonic foraminifers occur discontinuously downcore, detailed biostratigraphic zonation was not defined. However, it was possible to distinguish early and middle Eocene, early and late Miocene, Pliocene, and Pleistocene sediments on the basis of the planktonic foraminifers. The oldest sediments of Zone P6 of early Eocene age were obtained from the basal part of Hole 688E, which was penetrated to 779.0 m below seafloor (bsf). A biosiliceous facies of the area predominates above the N6-N7 zonal interval of early Miocene age. All sites are within the present coastal upwelling area off Peru, and many of the late Pliocene and Pleistocene assemblages are similar to those that are characteristic of modern upwelling areas. The core samples differ, however, by having a predominance of cold-water elements, such as Neogloboquadrina incompta and N. pachyderma. Warm-water species are prevalent at some horizons in the cores, suggesting shifts of the coastal upwelling centers or warmer climatic events.
Resumo:
Planktonic foraminiferal and nannoplankton stratigraphy of the Pliocene-Quatemary Sediments of the northern half of the Atlantic Ocean from the equator up to the Rockall Plateau and the Norwegian Sea, is considered. Lowlatitude zonations were used for the subdivision of the Pliocene and Quaternary Sediments of different climatic belts, and certain subglobal zonal units were recognized. Variations in the degree of resolution of the zonation in different latitudes were revealed; the resolution of zonal scales based on calcareous plankton diminishes northwards. Changes of taxonomic composition of the zonal foraminifer and nannoplankton assemblages within various latitudinal belts of the Atlantic were analyzed taking into consideration the influence of climatic factors and of local bionomic conditions. Correlation with the magnetostratigraphic time-scale permitted the establishment of the most reliable appearance and disappearance datums (datum planes) of planktonic foraminifer and nannoplankton species. Paleontologic plates demonstrate some guide forms of two groups of calcareous plankton, and a short description of the taxa is given in the text. Major stratigraphic problems of Pliocene and Quaternary marine deposits are discussed. The monograph can be used in different geological investigations by specialists in geology, paleontology, and oceanology.
Resumo:
Planktonic foraminifers from Ocean Drilling Program Leg 182, Holes 1126B and 1126C, 1128B and 1128C, 1130A and 1130B, 1132B, and 1134A and 1134B confirm the neritic record that during the early Miocene the Great Australian Bight region was in a cool-temperate regime with abundant Globoturborotalita woodi. Warm marine environments started to develop in the later part of the early Miocene, and the region became warm temperate to subtropical in the early middle Miocene with abundant Globigerinoides, Orbulina, and Globorotalia, corresponding to global warming at the Miocene climatic optimum. Fluctuations between cool- and warm-temperate conditions prevailed during the late Miocene, as indicated by abundant Globoconella conoidea and Menardella spp. A major change in planktonic foraminiferal assemblages close to the Miocene/Pliocene boundary not only drove many Miocene species into extinction but also brought about such new species as Globorotalia crassaformis and Globoconella puncticulata. Warm-temperate environments continued into the early and mid-Pliocene before being replaced by cooler conditions, supporting numerous Globoconella inflata and Globigerina quinqueloba. Based on data from this study and published results from the Australia-New Zealand region, we established a local planktonic foraminifer zonation scheme for separating the southern Australian Neogene (SAN) into Zones SAN1 to SAN19 characterizing the Miocene and Zones SAN20 to SAN25 characterizing the Pliocene. The Neogene sections from the Great Australian Bight are bounded by hiatuses of ~0.5 to >3 m.y. in duration, although poor core recovery in some holes obscured a proper biostratigraphic resolution. A total of 15 hiatuses, numbered 1 to 15, were identified as synchronous events from the base of the Miocene to the lower part of the Pleistocene. We believe that these are local manifestations of major third-order boundaries at about (1) 23.8, (2) 22.3, (3) 20.5, (4) 18.7, (5) 16.4, (6) 14.8, (7) 13.5, (8) 11.5, (9) 9.3, (10) 7.0, (11) 6.0, (12) 4.5, (13) 3.5, (14) 2.5, and (15) 1.5 Ma, respectively. This hiatus-bounded Neogene succession samples regional transgressions and stages of southern Australia and reveals its stepwise evolutionary history.
Resumo:
Leg 101 of the Ocean Drilling Program recovered a large volume of Neogene sediments from sites in the Straits of Florida, Little Bahama Bank, and Exuma Sound. In varying amounts, shallow-water, platform-derived carbonate debris is nearly ubiquitous. Reworked planktonic foraminifers are common, especially in the Pliocene-Pleistocene. At Site 626 in the Straits of Florida, a sequence of Holocene to upper Oligocene sediments was recovered. The greatest Neogene hiatus at this site spans the latest Miocene through Pliocene. Below this, several minor hiatuses are present in a generally conformable sequence. From the Little Bahama Bank transect (Sites 627, 628, and 630), a nearly complete composite Neogene section was sampled. At Site 627, a major unconformity separates lowermost Miocene sediments from middle to upper Eocene sediments. A second major unconformity occurs at Site 628. Here, middle Miocene sediments lie above uppermost Oligocene deposits. Sites 632, 633, and 631 in Exuma Sound all bottomed in a thick, lower Pliocene section. The mid-Pliocene is very thin at Sites 633 and 631, while it is better represented at Site 632. Major unconformities at Sites 627 and 628 appear to correlate with periods of elevated sea level, which suggests that carbonate platform shedding may be greatest during this part of the sea-level cycles. One of the salient features of the Bahamas is the lack of any systematic temporal distribution of hiatuses. Only a brief hiatus in the late Pliocene may be regional. It appears that local platform-shedding events were of equal or greater importance in developing the stratigraphy of the Bahamas than regional or eustatic events.
Resumo:
Neogene calcareous sediments were recovered at 11 sites along two north-south transects in the eastern equatorial Pacific Ocean during Ocean Drilling Program (ODP) Leg 138. An overview of planktonic foraminifer distribution in these sediments was presented in Mayer, Pisias, Janecek, et al. (1992) based on a preliminary examination of core-catcher samples. In general, the preservation state of the foraminifers is poor throughout most of the sedimentary sequences, making this microfossil group here of much less value for biostratigraphy than other microfossil groups. Pliocene-Pleistocene planktonic foraminifers from several sites have been analyzed in great detail for their oxygen and carbon isotope composition in various high-resolution studies (Farrell et al., this volume; Mix et al., this volume; Ravello et al., this volume; Shackleton et al., this volume). Planktonic foraminiferal datums of biostratigraphic value have been identified in several of these studies. This report presents planktonic foraminiferal distribution in selected Miocene sediments.