965 resultados para Maximal aerobic power


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to test if the critical power model can be used to determine the critical rest interval (CRI) between vertical jumps. Ten males performed intermittent countermovement jumps on a force platform with different resting periods (4.1 +/- 0.3 s, 5.0 +/- 0.4 s, 5.9 +/- 0.6 s). Jump trials were interrupted when participants could no longer maintain 95% of their maximal jump height. After interruption, number of jumps, total exercise duration and total external work were computed. Time to exhaustion (s) and total external work (J) were used to solve the equation Work = a + b . time. The CRI (corresponding to the shortest resting interval that allowed jump height to be maintained for a long time without fatigue) was determined dividing the average external work needed to jump at a fixed height (J) by b parameter (J/s). in the final session, participants jumped at their calculated CRI. A high coefficient of determination (0.995 +/- 0.007) and the CRI (7.5 +/- 1.6 s) were obtained. In addition, the longer the resting period, the greater the number of jumps (44 13, 71 28, 105 30, 169 53 jumps; p<0.0001), time to exhaustion (179 +/- 50, 351 +/- 120, 610 +/- 141, 1,282 +/- 417 s; p<0.0001) and total external work (28.0 +/- 8.3, 45.0 +/- 16.6, 67.6 +/- 17.8, 111.9 +/- 34.6 kJ; p<0.0001). Therefore, the critical power model may be an alternative approach to determine the CRI during intermittent vertical jumps.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Running exercises are frequently related to muscular injuries, which may be a result of muscular imbalance. The present study aimed to verify the effects of heavy-intensity continuous running exercise on the functional and conventional hamstrings: quadriceps ratios, and also in the knee flexors and extensors EMG activity in active non-athletic individuals. Sixteen active males performed maximal isokinetic concentric and eccentric knee flexions and extensions at 60 degrees s(-1) and 180 degrees s(-1). In another session, the same procedure was conducted after a continuous running exercise at 95% onset of blood lactate accumulation. Torque and electromyographic ratios were calculated from peak torque and integrated electromyographic activity (knee flexor and extensors). Creatine kinase was measured before and 24 h after running exercise. Eccentric torque (knee flexion and extension) decreased significantly after running only at 180 degrees s(-1) (p < 0.05). No differences were found for the conventional torque ratios (p > 0.05), however, the functional torque ratios at 180 degrees s(-1) decreased significantly after running (p < 0.05). No effects on the electromyographic activity and electronnyographic ratios were found (p > 0.05). Creatine kinase increased slightly 24 h after running (p < 0.05). Heavy-intensity continuous running exercise decreased knee flexor and extensor eccentric torque, and functional torque ratios under fast velocities (180 degrees s(-1)), probably as result of peripheral fatigue. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Maximal lactate steady state (MLSS) corresponds to the highest blood lactate concentration (MLSSc) and workload (MLSSw) that can be maintained over time without continual blood lactate accumulation and is considered an important marker of endurance exercise capacity. The present study was undertaken to determine MLSSw and MLSSc in running mice. In addition, we provide an exercise training protocol for mice based on MLSSw.2. Maximal lactate steady state was determined by blood sampling during multiple sessions of constant-load exercise varying from 9 to 21 m/min in adult male C57BL/6J mice. The constant-load test lasted at least 21 min. The blood lactate concentration was analysed at rest and then at 7 min intervals during exercise.3. The MLSSw was found to be 15.1 +/- 0.7 m/min and corresponded to 60 +/- 2% of maximal speed achieved during the incremental exercise testing. Intra- and interobserver variability of MLSSc showed reproducible findings. Exercise training was performed at MLSSw over a period of 8 weeks for 1 h/day and 5 days/week. Exercise training led to resting bradycardia (21%) and increased running performance (28%). of interest, the MLSSw of trained mice was significantly higher than that in sedentary littermates (19.0 +/- 0.5 vs 14.2 +/- 0.5 m/min; P = 0.05), whereas MLSSc remained unchanged (3.0 mmol/L).4. Altogether, we provide a valid and reliable protocol to improve endurance exercise capacity in mice performed at highest workload with predominant aerobic metabolism based on MLSS assessment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to describe a double-bout exercise test for non-exhaustive aerobic capacity determination in swimming rats. Adult rats were Submitted to 4 swimming tests at different intensities (4%, 6%, 7%, and 8% of body mass), with intervals of 48 h between them. Two exercise bouts of equal intensity lasting 5 min were performed, separated by 2 min with blood collection for lactate analysis. For each intensity, delta lactate was determined by subtracting lactate concentration at the end of the first effort from the lactate at the end of the second effort. Individual linear interpolation of delta lactate concentration enabled determination of a null delta, equivalent to the critical load (CL). Maxima) lactate steady state (MLSS) was also determined. The estimated CL was of 4.8% body mass and the MLSS was observed at 100% of CL, with blood lactate of 5.20 mmol/L. At 90%, blood lactate stabilized, with a progressive increase to 110% CL. These results offer a potential determination of aerobic capacity in swimming rats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to analyze the effect of two different high-intensity interval training (HIT) programs on selected aerobic physiological indices and 1500 and 5000 m running performance in well-trained runners. The following tests were completed (n = 17): (i) incremental treadmill test to determine maximal oxygen uptake (VO2max), running velocity associated with VO2 max (VVO2max), and the velocity corresponding to 3.5 mmol/L of blood lactate concentration (vOBLA); (ii) submaximal constant-intensity test to determine running economy (RE); and (iii) 1500 and 5000 m time trials on a 400 m track. Runners were then randomized into 95% vVO(2max) or 100% vVO(2max) groups, and undertook a 4 week training program consisting of 2 HIT sessions (performed at 95% or 100% vVO(2max), respectively) and 4 submaximal run sessions per week. Runners were retested on all parameters at the completion of the training program. The VO2 max values were not different after training for both groups. There was a significant increase in post-training vVO(2 max), RE, and 1500 in running performance in the 100% vVO(2 max) group. The vOBLA and 5000 m running performance were significantly higher after the training period for both groups. We conclude that vOBLA and 5000 m running performance can be significantly improved in well-trained runners using a 4 week training program consisting of 2 HIT sessions (performed at 95% or 100% vVO(2max)) and 4 submaximal run sessions per week. However, the improvement in vVO(2 max), RE, and 1500 in running performance seems to be dependent on the HIT program at 100% vVO(2 max).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to compare the effect of different strength training protocols added to endurance training on running economy (RE). Sixteen well-trained runners (27.4 +/- 4.4 years; 62.7 +/- 4.3 kg; 166.1 +/- 5.0 cm), were randomized into two groups: explosive strength training (EST) (n = 9) and heavy weight strength training (HWT) (n = 7) group. They performed the following tests before and after 4 weeks of training: 1) incremental treadmill test to exhaustion to determine of peak oxygen uptake and the velocity corresponding to 3.5 mM of blood lactate concentration; 2) submaximal constant-intensity test to determine RE; 3) maximal countermovernent jump test and; 4) one repetition maximal strength test in leg press. After the training period, there was an improvement in RE only in the HWT group (HWT = 47.3 +/- 6.8 vs. 44.3 +/- 4.9 ml.kg(-1) -min(-1); EST = 46.4 +/- 4.1 vs. 45.5 +/- 4.1 ml.kg(-1) .min(-1)). In conclusion, a short period of traditional strength training can improve RE in well-trained runners, but this improvement can be dependent on the strength training characteristics. When comparing to explosive training performed in the same equipment, heavy weight training seems to be more efficient for the improvement of RE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to analyze the effects of exercise mode on the validity of onset of blood lactate accumulation (OBLA-3.5-mM fixed blood lactate concentration) to predict the work-rate at maximal lactate steady state (MLSSwork-rate). Eleven recreationally active mates (21.3 +/- 2.9 years, 72.8 +/- 6.7 kg, 1.78 +/- 0.1 m) performed randomly incremental tests to determine OBLA (stage duration of 3 min), and 2 to 4 constants work-rate exercise tests to directly determine maximal lactate steady state parameters on a cycle-ergometer and treadmill. For both exercise modes, the OBLA was significantly correlated to MLSSwork-rate, (cycling: r = 0.81 p = 0.002; running: r = 0.94, p < 0.001). OBLA (156.2 +/- 41.3 W) was lower than MLSSwork-rate (179.6 +/- 26.4 W) during cycling exercise (p = 0.007). However, for running exercise, there was no difference between OBLA (3.2 +/- 0.6 m s(-1)) and MLSSwork-rate (3.1 +/- 0.4 m s(-1)). The difference between OBLA and MLSSworkrate on the cycle-ergometer (r = 0.86; p < 0.001) and treadmill (r = 0.64; p = 0.048) was significantly related to the specific MLSS. We can conclude that the validity of OBLA on predicting MLSSwork-rate is dependent on exercise mode and that its disagreement is related to individual variations in MLSS. (C) 2007 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to address the question if the VO2 kinetics is further improved as the aerobic training status increases from trained to elite level athletes. Maximal oxygen uptake (VO(2)max), work-rate associated to VO(2)max (IVO(2)max) and VO2 kinetics of moderate (Mod) and maximal exercise (Max) were determined in fifty-five subjects. Then, they were assigned into three groups: low (LF), intermediate (IF) and high (HF) aerobic fitness level. In average, the VO(2)max of LF, IF and HF groups were, respectively, 36.0 +/- 3.1, 51.1 +/- 4.5 and 68.1 +/- 3.9 ml . kg . min(-1) (p <= 0.05 among each other). VO2 kinetics mean response time of both exercise intensities were significantly faster (p <= 0.05) in HF (Mod, 27.5 +/- 5.5 s; Max, 32.6 +/- 8.3 s) and IF (Mod, 25.0 +/- 3.1 s; Max, 42.6 +/- 10.4 s) when compared to LF (Mod, 35.7 +/- 7.9 s; Max: 57.8 +/- 17.8 s). We can conclude that VO2 kinetics is improved as the fitness level is increased from low to intermediate but not further improved as the aerobic fitness level increases from intermediate to high.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the cost of prey ingestion in the South American rattlesnake, Crotalus durissus, to see if the capacity to generate energy aerobically could be a constraint on the size of the prey that can be ingested. To accomplish this goal, we measured time and aerobic metabolism (inferred from oxygen consumption) of juvenile C. durissus ingesting prey ranging from 10 to 50% of their own body mass. Time needed for prey ingestion increased with prey size, with prey representing 10 and 20% of snake size being ingested with the same effort. Whole animal rates of oxygen consumption increased linearly with prey size, but at a slower pace for snakes ingesting prey larger than 30% of their body mass. Aerobic factorial power input necessary for prey ingestion increased with prey size, and for snakes ingesting prey representing 50% of their body mass it equaled the aerobic factorial scope for exercise. For the maximum prey size tested, the aerobic derived energy necessary for prey ingestion represented 0.02% of the total energy content of the prey. Within the prey size range we studied, the cost of ingestion did not constitute any constraint on the size of the prey that can be ingested. These constraints are set by morphological (gape size), ecological (predation risk), and, probably, by physiological parameters, as suggested by the tendency of V̇O2 during ingestion to increase at a slower pace at relative larger prey sizes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to analyze the validity of the velocity corresponding to the onset of blood lactate accumulation (OBLA) and critical velocity (CV) to determine the maximal lactate steady state (MLSS) in soccer players. Twelve male soccer players (21.5 ± 1.0 years) performed an incremental treadmill test for the determination of OBLA. The velocity corresponding to OBLA (3.5 mM of blood lactate) was determined through linear interpolation. The subjects returned to the laboratory on 7 occasions for the determination of MLSS and CV. The MLSS was determined from 5 treadmill runs of up to 30-minute duration and defined as the highest velocity at which blood lactate did not increase by more than 1 mM between minutes 10 and 30 of the constant velocity runs. The CV was determined by 2 maximal running efforts of 1,500 and 3,000 m performed on a 400-m running track. The CV was calculated as the slope of the linear regression of distance run versus time. Analysis of variance revealed no significant differences between OBLA (13.6 ± 1.4 km·h-1) and MLSS (13.1 ± 1.2 km·h-1) and between OBLA and CV (14.4 ± 1.1 km·h-1). The CV was significantly higher than the MLSS. There was a significant correlation between MLSS and OBLA (r = 0.80), MLSS and CV (r = 0.90), and OBLA and CV (r = 0.80). We can conclude that the OBLA can be utilized in soccer players to estimate the MLSS. In this group of athletes, however, CV does not represent a sustainable steady-state exercise intensity. © 2005 National Strength & Conditioning Association.