973 resultados para Maternal protein restriction
Resumo:
Maternal malnutrition during the lactation period in early development may have long-term programming effects on adult offspring. We evaluated the combined effects of parasitological behaviour and histopathological features and malnutrition during lactation. Lactating mice and their pups were divided into a control group (fed a normal diet of 23% protein), a protein-restricted group (PR) (fed a diet containing 8% protein) and a caloric-restricted group (CR) (fed according to the PR group intake). At the age of 60 days, the offspring were infected with Schistosoma mansoni cercariae and killed at nine weeks post-infection. Food intake, body and liver masses, leptinaemia, corticosteronaemia, collagen morphometry and neogenesis and the cellular composition of liver granulomas were studied. PR offspring showed reduced weight gain and hypophagia, whereas CR offspring became overweight and developed hyperphagia. The pre-patent period was longer (45 days) in both programmed offspring as compared to controls (40 days). The PR-infected group had higher faecal and intestinal egg output and increased liver damage. The CR-infected group showed a lower number of liver granulomas, increased collagen neogenesis and a higher frequency of binucleate hepatocytes, suggesting a better modulation of the inflammatory response and increased liver regeneration. Taken together, our findings suggest that neonatal malnutrition of offspring during lactation affects the outcome of schistosomiasis in mice.
Resumo:
Members of the human APOBEC3 family of editing enzymes can inhibit various mobile genetic elements. APOBEC3A (A3A) can block the retrotransposon LINE-1 and the parvovirus adeno-associated virus type 2 (AAV-2) but does not inhibit retroviruses. In contrast, APOBEC3G (A3G) can block retroviruses but has only limited effects on AAV-2 or LINE-1. What dictates this differential target specificity remains largely undefined. Here, we modeled the structure of A3A based on its homology with the C-terminal domain of A3G and further compared the sequence of human A3A to those of 11 nonhuman primate orthologues. We then used these data to perform a mutational analysis of A3A, examining its ability to restrict LINE-1, AAV-2, and foreign plasmid DNA and to edit a single-stranded DNA substrate. The results revealed an essential functional role for the predicted single-stranded DNA-docking groove located around the A3A catalytic site. Within this region, amino acid differences between A3A and A3G are predicted to affect the shape of the polynucleotide-binding groove. Correspondingly, transferring some of these A3A residues to A3G endows the latter protein with the ability to block LINE-1 and AAV-2. These results suggest that the target specificity of APOBEC3 family members is partly defined by structural features influencing their interaction with polynucleotide substrates.
Resumo:
ABSTRACT : The development of the retina is a very complex process, occurring through the progressive restriction of cell fates, from pluripotent cell populations to complex tissues and organs. In all vertebrate species analyzed so far, retinal differentiation starts with the generation of retinal ganglion cells (RGC)s. One of the documented key essential events in the specification of RGCs is the expression of ATHS, an atonal homolog encoding a bHLH transcription factor. Despite the putative role of master regulator of RGC differentiation, the mechanism of integrating its functions into a coherent program underlying the production of this subclass of retinal neurons has not yet been elucidated. By using chromatin immunoprecipitation combined with microarray (ChIP-on-chip) we have screened for ATH5 direct targets in the developing chick retina at two consecutive periods: E3.5 (stage HH22) and E6 (stage HH30), covering the stages of progenitor proliferation, neuroepithelium patterning, RGC specification, cell cycle exit and early neuronal differentiation. In parallel, complementary analysis with Affymetrix expression microarrays was conducted. We compared RGCs versus retina to see if the targets correspond to genes preferentially expressed in RGCs. We also precociously overexpressed ATH5 in the retina of individual embryo, and contralateral retina vas used as a control. Our integrated approach allowed us to establish a compendium of ATH5-targets and enabled us to position ATH5 in the transcription network underlying neurogenesis in the retina. Malattia Leventinese (ML) is an autosomal, dominant retinal dystrophy characterized by extracellular, amorphous deposits known as drusen, between the retinal pigment epithelium (RPE) and Bruch's membrane. On the genetic level, it has been associated with a single missense mutation (R345W) in a widely expressed gene with unknown function called EFEMP1. We determined expression patterns of the EFEMP1 gene in normal and ML human retinas. Our data shown that the upregulation of EFEMP1 is not specific to ML eye, except for the region of the ciliary body. We also analyzed the cell compartmentalization of different versions of the protein (both wild type and mutant). Our studies indicate that both abnormal expression of the EFEMP1 gene and mutation and accumulation of EFEMP 1 protein (inside or outside the cells) might contribute to the ML pathology. Résumé : 1er partie : L'ontogenèse de la rétine est un processus complexe au cours duquel des cellules progénitrices sont engagée, par vagues successives, dans des lignées où elles vont d'abord être déterminées puis vont se différencier pour finalement construire un tissu rétinien composé de cinq classes de neurones (les photorécepteurs, les cellules horizontales, bipolaires, amacrines et ganglionnaires) et d'une seule de cellules gliales (les cellules de Muller). Chez tous les vertébrés, la neurogenèse rétinienne est d'abord marquée par la production des cellules ganglionnaires (RGCs). La production de cette classe de neurone est liée à l'expression du gène ATH5 qui est un homologue du gène atonal chez la Drosophile et qui code pour un facteur de transcription de la famille des protéines basic Helix-Loop-Helix (bHLH). Malgré le rôle central que joue ATH5 dans la production des RGCs, le mécanisme qui intègre la fonction de cette protéine dans le programme de détermination neuronale et ceci en relation avec le développement de la rétine n'est pas encore élucidé. Grâce à une technologie qui permet de combiner la sélection de fragments de chromatine liant ATH5 et la recherche de séquences grâce à des puces d'ADN non-codants (ChIP-on-chip), nous avons recherché des cibles potentielles de la protéine ATH5 dans la rétine en développement. Nous avons conduit cette recherche à deux stades de développement de manière à englober la phase de prolifération cellulaire, la détermination des RGCs, la sortie du cycle cellulaire ainsi que les premières étapes de la différentiation de ces neurones. Des expériences complémentaires nous ont permis de définir les patrons d'expression des gènes sélectionnés ainsi que l'activité promotrice des éléments de régulation identifiés lors de notre criblage. Ces approches expérimentales diverses et complémentaires nous ont permis de répertorier des gènes cibles de la protéine ATH5 et d'établir ainsi des liens fonctionnels entre des voies métaboliques dont nous ne soupçonnions pas jusqu'alors qu'elles puissent être associées à la production d'une classe de neurones centraux. 2ème partie : Malattia Leventinese (ML) est une maladie génétique qui engendre une dystrophie de la rétine. Elle se caractérise par l'accumulation de dépôt amorphe entre l'épithélium pigmentaire et la membrane de Bruch et connu sous le nom de drusen. Cette maladie est liée à une simple mutation non-sens (R345W) dans un gène dénommé EFEMP1 qui est exprimé dans de nombreux tissus mais dont la fonction reste mal définie. Une étude détaillée de l'expression de ce gène dans des rétines humaines a révélé une expression à un niveau élevé du gène EFEMP1 dans divers tissus de l'oeil ML mais également dans des yeux contrôles. Alors que l'accumulation d'ARN messager EFEMP1 dans les cellules de l'épithélium pigmentaire n'est pas spécifique à ML, l'expression de ce gène dans le corps cilié n'a été observée que dans l'oeil ML. Nous avons également comparé la sécrétion de la protéine sauvage avec celle porteuse de la mutation. En résumé, notre étude révèle que le niveau élevé d'expression du gène EFEMP1 ainsi que l'accumulation de la protéine dans certains compartiments cellulaires pourraient contribuer au développement de pathologies rétiniennes liées à ML.
Resumo:
Quinupristin-dalfopristin (Q-D) synergizes with cefepime for the treatment of methicillin-resistant Staphylococcus aureus (MRSA). Here, we studied whether the synergism was restricted to MRSA and if it extended to non-beta-lactam cell wall inhibitors or to other inhibitors of protein synthesis. Three MRSA and two methicillin-susceptible S. aureus (MSSA) strains were tested, including an isogenic pair of mecA (-)/mecA (+) S. aureus Newman. The drug interactions were determined by fractional inhibitory concentration (FIC) indices and population analysis profiles. The antibacterial drugs that we used included beta-lactam (cefepime) and non-beta-lactam cell wall inhibitors (D-cycloserine, fosfomycin, vancomycin, teicoplanin), inhibitors of protein synthesis (Q-D, erythromycin, chloramphenicol, tetracycline, linezolid, fusidic acid), and polynucleotide inhibitors (cotrimoxazole, ciprofloxacin). The addition of each protein inhibitor to cefepime was synergistic (FIC ≤ 0.5) or additive (FIC > 0.5 but < 1) against MRSA, but mostly indifferent against MSSA (FIC ≥ 1 but ≤ 4). This segregation was not observed after adding cotrimoxazole or ciprofloxacin to cefepime. Population analysis profiles were performed on plates in the presence of increasing concentrations of the cell wall inhibitors plus 0.25 × minimum inhibitory concentration (MIC) of Q-D. Cefepime combined with Q-D was synergistic against MRSA, but D-cycloserine and glycopeptides were not. Thus, the synergism was specific to beta-lactam antibiotics. Moreover, the synergism was not lost against fem mutants, indicating that it acted at another level. The restriction of the beneficial effect to MRSA suggests that the functionality of penicillin-binding protein 2A (PBP2A) was affected, either directly or indirectly. Further studies are necessary in order to provide a mechanism for this positive interaction.
Resumo:
Either calorie restriction, loss of function of the nutrient-dependent PKA or TOR/SCH9 pathways, or activation of stress defences improves longevity in different eukaryotes. However, the molecular links between glucose depletion, nutrient-dependent pathways and stress responses are unknown. Here we show that either calorie restriction or inactivation of nutrient-dependent pathways induces life-span extension in fission yeast, and that such effect is dependent on the activation of the stress-dependent Sty1 MAP kinase. During transition to stationary phase in glucose-limiting conditions, Sty1 becomes activated and triggers a transcriptional stress program, whereas such activation does not occur under glucose-rich conditions. Deletion of the genes coding for the SCH9-homologue Sck2 or the Pka1 kinases, or mutations leading to constitutive activation of the Sty1 stress pathway increase life span under glucose-rich conditions, and importantly such beneficial effects depend ultimately on Sty1. Furthermore, cells lacking Pka1 display enhanced oxygen consumption and Sty1 activation under glucose-rich conditions. We conclude that calorie restriction favours oxidative metabolism, reactive oxygen species production and Sty1 MAP kinase activation, and this stress pathway favours life-span extension.
Resumo:
Abstract en FrançaisCTCFL a d'abord été identifié comme un paralogue de la protéine ubiquitaire CTCF en raison de sa forte homologie entre leurs onze « zinc fingers », un domaine de liaison à l'ADN. Parmi ses nombreux rôles, la liaison des zinc fingers de CTCF à la région de contrôle de l'empreinte (ICR) maternelle non-méthylée Igf2/H19, contrôle l'expression empreinte (monoallélique) de H19 et IGF2 dans les cellules somatiques. La méthylation de l'ICR Igf2/H19 paternelle est nécessaire à l'expression empreinte de ces deux gènes. Bien que le mécanisme par lequel l'ICR est méthylé soit mal compris, il est connu que l'établissement de la méthylation se produit pendant le développement des cellules germinales mâles et que les ADN méthyltransférases de novo DNMT3A et DNMT3L sont essentiels. Par conséquent, CTCFL fournit un bon candidat pour un rôle dans la méthylation de l'ICR paternelle Igf2/H19 en raison de son expression restreinte à certains types de cellules où la méthylation de l'ICR a lieu (spermatogonies et spermatocytes) ainsi qu'en raison sa capacité à lier les ICR lgf2/HÎ9 dans ces cellules. Les premiers travaux expérimentaux de cette thèse portent sur le rôle possible des mutations de CTCFL chez les patients atteints du syndrome de Silver-Russell (SRS), où une diminution de la méthylation de l'ICR IGF2/H19 a été observée chez 60% d'entre eux. Admettant que CTCFL pourrait être muté chez ces patients, j'ai examiné les mutations possibles de CTCFL chez 35 d'entre eux par séquençage de l'ADN et analyse du nombre de copies d'exons. N'ayant trouvé aucune mutation chez ces patients, cela suggère que les mutations de CTCFL ne sont pas associées au SRS. Les travaux expérimentaux suivants ont porté sur les modifications post-traductionnelles de CTCFL par la protéine SU MO « small ubiquitin-like modifier » (SUMO). La modification de protéines par SU MO change les interactions avec d'autres molécules (ADN ou protéines). Comme CTCFL régule sans doute l'expression d'un certain nombre de gènes dans le cancer et que plusieurs facteurs de transcription sont régulés par SUMO, j'ai mené des expériences pour déterminer si CTCFL est sumoylé. En effet, j'ai observé que CTCFL est sumoylated in vitro et in vivo et j'ai déterminé les deux résidus d'attachement de SUMO aux lysines 181 et 645. Utilisant les mutants de CTCFL K181R et K645R ne pouvant pas être sumoylated, j'ai évalué les conséquences fonctionnelles de la modification par SUMO. Je n'ai trouvé aucun changement significatif dans la localisation subcellulaire, la demi-vie ou la liaison à l'ADN, mais ai constaté que la sumoylation module à la fois {'activation CTCFL-dépendante et la répression de l'expression génique. Il s'agit de la première modification post-traductionnelle décrite pour CTCFL et les conséquences possibles de cette modification sont discutées pour le cancer et les testicules normaux. Avec cette thèse, j'espère avoir ajouté des résultats importants à l'étude de CTCFL et donné quelques idées pour de futures recherches.AbstractJeremiah Bernier-Latmani, Institute of Pathology, University of Lausanne, CHUVCTCFL was first identified as a paralog of the ubiquitous protein CTCF because of high homology between their respective eleven zinc fingers, a DNA binding domain. Among its many roles, CTCF zinc finger-mediated binding to the unmethylated maternal Igf2/H19 imprinting control region (ICR), controls the imprinted (monoallelic) expression of Igf2 and H19 in somatic cells. Methylation of the paternal Igf2/H19 ICR is necessary for the imprinted expression of the two genes. Although the mechanism by which the ICR is methylated is incompletely understood, it is known that establishment of methylation occurs during male germ cell development and the de novo DNA methyltransferases DNMT3A and DNMT3L are essential. Therefore, CTCFL provided a good candidate to play a role in methylation of the paternal Igf2/H19 ICR because of its restricted expression to cell types where ICR methylation takes place (spermatogonia and spermatocytes) and its ability to bind the Igf2/H19 ICR in these cells. The first experimental work of this thesis investigated the possible role of CTCFL mutations in Silver-Russell syndrome (SRS) patients, where it has been observed that 60% of the patients have reduced methylation of the IGF2/HÎ9 ICR. Reasoning that CTCFL could be mutated in these patients, I screened 35 patients for mutations in CTCFL by DNA sequencing and exon copy number analysis, I did not find any mutations in these patients suggesting that mutations of CTCFL are not associated with SRS. The next experimental work of my thesis focused on posttranslational modification of CTCFL by small ubiquitin-like modifier (SUMO) protein. SUMO modification of proteins changes the interactions with other molecules (DNA or protein). As CTCFL arguably regulates the expression of a number of genes in cancer and many transcription factors are regulated by SUMO, I conducted experiments to assess whether CTCFL is sumoylated. I found that CTCFL is sumoylated in vitro and in vivo and determined the two residues of SUMO attachment to be lysines 181 and 645. Using K181R, K645R mutated CTCFL- which cannot be detected to be sumoylated-1 assessed the functional consequences of SUMO modification. I found no significant changes in subcellular localization, half-life or DNA binding, but found that sumoylation modulates both CTCFL-dependent activation and repression of gene expression. This is the first posttranslational modification described for CTCFL and possible consequences of this modification are discussed in both cancer and normal testis. With this thesis, I hope I have added important findings to the study of CTCFL and provide some ideas for future research.
Resumo:
Mutation of the Schizosaccharomyces pombe cdc7 gene prevents formation of the division septum and cytokinesis. We have cloned the cdc7 gene and show that it encodes a protein kinase which is essential for cell division. In the absence of cdc7 function, spore germination, DNA synthesis and mitosis are unaffected, but cells are unable to initiate formation of the division septum. Overexpression of p120cdc7 causes cell cycle arrest; cells complete mitosis and then undergo multiple rounds of septum formation without cell cleavage. This phenotype, which is similar to that resulting from inactivation of cdc16 protein, requires the kinase activity of p120cdc7. Mutations inactivating the early septation gene, cdc11, suppress the formation of multiple septa and allow cells to proliferate normally. If formation of the division septum is prevented by inactivation of either cdc14 or cdc15, p120cdc7 overproduction does not interfere with other events in the mitotic cell cycle. Septation is not induced by overexpression of p120cdc7 in G2 arrested cells, indicating that it does not bypass the normal dependency of septation upon initiation of mitosis. These findings indicate that the p120cdc7 protein kinase plays a key role in initiation of septum formation and cytokinesis in fission yeast and suggest that p120cdc7 interacts with the cdc11 protein in the control of septation.
Resumo:
Plaque formation in vaccinia virus is inhibited by the compound N1-isonicotinoyl-N2-3-methyl-4-chlorobenzoylhydrazine (IMCBH). We have isolated a mutant virus that forms wild-type plaques in the presence of the drug. Comparison of wild-type and mutant virus showed that both viruses produced similar amounts of infectious intracellular naked virus in the presence of the drug. In contrast to the mutant, no extracellular enveloped virus was obtained from IMCBH-treated cells infected with wild-type virus. Marker rescue experiments were used to map the mutation conferring IMCBH resistance to the mutant virus. The map position coincided with that of the gene encoding the viral envelope antigen of M(r) 37,000. Sequence analysis of both wild-type and mutant genes showed a single nucleotide change (G to T) in the mutant gene. In the deduced amino acid sequence, the mutation changes the codon for an acidic Asp residue in the wild-type gene to one for a polar noncharged Tyr residue in the mutant.
Resumo:
INTRODUCTION: Intrauterine growth restriction (IUGR) affects ∼8% of all pregnancies and is associated with major perinatal mortality and morbidity, and with an increased risk to develop cardiovascular diseases in adulthood. Despite identification of several risk factors, the mechanisms implicated in the development of IUGR remain poorly understood. In case of placental insufficiency, reduced delivery of oxygen and/or nutrients to the fetus could be associated with alterations in the umbilical circulation, contributing further to the impairment of maternal-fetal exchanges. We compared the structural and functional properties of umbilical cords from growth-restricted and appropriate for gestational age (AGA) term newborns, with particular attention to the umbilical vein (UV). METHODS: Human umbilical cords were collected at delivery. Morphological changes were investigated by histomorphometry, and UV's reactivity by pharmacological studies. RESULTS: Growth-restricted newborns displayed significantly lower growth parameters, placental weight and umbilical cord diameter than AGA controls. Total cross-section and smooth muscle areas were significantly smaller in UV of growth-restricted neonates than in controls. Maximal vasoconstriction achieved in isolated UV was lower in growth-restricted boys than in controls, whereas nitric oxide-induced relaxation was significantly reduced in UV of growth-restricted girls compared to controls. CONCLUSION: IUGR is associated with structural alterations of the UV in both genders, and with a decreased nitric oxide-induced relaxation in UV of newborn girls, whereas boys display impaired vasoconstriction. Further investigations will allow to better understand the regulation of umbilical circulation in growth-restricted neonates, which could contribute to devise potential novel therapeutic strategies to prevent or limit the development of IUGR.
Resumo:
We have reported that ingesting a meal immediately after exercise increased skeletal muscle accretion and less adipose tissue accumulation in rats employed in a 10 week resistance exercise program. We hypothesized that a possible increase in the resting metabolic rate (RMR) as a result of the larger skeletal muscle mass might be responsible for the less adipose deposition. Therefore, the effect of the timing of a protein supplement after resistance exercise on body composition and the RMR was investigated in 17 slightly overweight men. The subjects participated in a 12-week weight reduction program consisting of mild energy restriction (17% energy intake reduction) and a light resistance exercise using a pair of dumbbells (3-5 kg). The subjects were assigned to two groups. Group S ingested a protein supplement (10 g protein, 7 g carbohydrate, 3.3 g fat and one-third of recommended daily allowance (RDA) of vitamins and minerals) immediately after exercise. Group C did not ingest the supplement. Daily intake of both energy and protein was equal between the two groups and the protein intake met the RDA. After 12 weeks, the bodyweight, skinfold thickness, girth of waist and hip and percentage bodyfat significantly decreased in the both groups, however, no significant differences were observed between the groups. The fat-free mass significantly decreased in C, whereas its decrease in S was not significant. The RMR and post-meal total energy output significantly increased in S, while these variables did not change in C. In addition, the urinary nitrogen excretion tended to increase in C but not in S. These results suggest that the RMR increase observed in S might be associated with an increase in body protein synthesis.
Resumo:
A 6008 base pair fragment of the vaccinia virus DNA containing the gene for the precursor of the major core protein 4 a, which has been designated P4 a, was sequenced. A long open reading frame (ORF) encoding a protein of molecular weight 102,157 started close to the position where the P4 a mRNA had been mapped. Analysis of the mRNA by S1 nuclease mapping and primer extension indicated that the 5' end defined by the former method is not the true 5' end. This suggests that the P4 a coding region is preceded by leader sequences that are not derived from the immediate vicinity of the gene, similar to what has been reported for another late vaccinia virus mRNA. The sequenced DNA contained several further ORFs on the same, or opposite DNA strand, providing further evidence for the close spacing of protein-coding sequences in the viral genome.
Resumo:
Islet-brain1/JNK-interacting protein-1 (IB1/JIP-1) is a scaffold protein that organizes the JNK, MKK7, and MLK1 to allow signaling specificity. Targeted disruption of the gene MAPK8IP1 encoding IB1/JIP-1 in mice led to embryonic death prior to blastocyst implantation. In culture, no IB1/JIP-1(-/-) embryos were identified indicating that accelerated cell death occurred during the first cell cycles. IB1/JIP-1 expression was detected in unfertilized oocytes, in spermatozoa, and in different stages of embryo development. Thus, despite the maternal and paternal transmission of the IB1/JIP-1 protein, early transcription of the MAPK8IP1 gene is required for the survival of the fertilized oocytes.
Resumo:
Background:Intrauterine growth restriction (IUGR) is a major risk factor for both perinatal and long-term morbidity. Bovine lactoferrin (bLf) is a major milk glycoprotein considered as a pleiotropic functional nutrient. The impact of maternal supplementation with bLf on IUGR-induced sequelae, including inadequate growth and altered cerebral development, remains unknown.Methods:IUGR was induced through maternal dexamethasone infusion (100 μg/kg during last gestational week) in rats. Maternal supplementation with bLf (0.85% in food pellet) was provided during both gestation and lactation. Pup growth was monitored, and Pup brain metabolism and gene expression were studied using in vivo (1)H NMR spectroscopy, quantitative PCR, and microarray in the hippocampus at postnatal day (PND)7.Results:Maternal bLf supplementation did not change gestational weight but increased the birth body weight of control pups (4%) with no effect on the IUGR pups. Maternal bLf supplementation allowed IUGR pups to recover a normalized weight at PND21 (weaning) improving catch-up growth. Significantly altered levels of brain metabolites (γ-aminobutyric acid, glutamate, N-acetylaspartate, and N-acetylaspartylglutamate) and transcripts (brain-derived neurotrophic factor (BDNF), divalent metal transporter 1 (DMT-1), and glutamate receptors) in IUGR pups were normalized with maternal bLf supplementation.Conclusion:Our data suggest that maternal bLf supplementation is a beneficial nutritional intervention able to revert some of the IUGR-induced sequelae, including brain hippocampal changes.
Resumo:
The aim of this work was to investigate the influence of diet energy level on performance and hormonal profiles of broilers during post restriction period. It was a split-plot experiment, and the main treatments were in a 2x2 factorial scheme. Birds were fed restricted to 30% of the ad libitum intake, from 7 to 14 days of age. After the restriction period, birds were fed ad libitum with diets containing low (2,900 kcal ME/kg) or high (3,200 kcal ME/kg) energy until 49 days of age. Broilers fed with high energy ration showed lower feed intake and better feed conversion and decreased carcass protein; however, abdominal fat pad, and total carcass fat were not affected by ration energy levels or feeding program. Neither diet energy level nor feed restriction program changed body weight at 49 days. The profile of insulin-like growth factor-1 (IGF-1) was reduced during the feed restriction period, but increased at refeeding period. Feeding program and ration energy level did not affect T3, T4 and growth hormone serum concentrations. Feed restriction at 30% of ad libitum intake is not enough to promote changes on carcass quality, related to fat deposition, and on metabolic hormone levels, except IGF-1 seric level that has rapid increase after feed restriction.
Resumo:
The tropism of retroviruses relies on their ability to exploit cellular factors for their replication as well as to avoid host-encoded inhibitory activities such as TRIM5α. N-tropic murine leukemia virus (MLV) is sensitive to human TRIM5α restriction, whereas human immunodeficiency virus type 1 (HIV1) escapes this antiviral factor. We showed previously that mutation of four critical amino acid residues within the capsid (CA) can render MLV resistant to huTRIM5α. Here, we exploit the high degree of conservation in the tertiary structure of retroviral capsids to map the corresponding positions on the HIV1 capsid. We then demonstrate that, by introducing changes at some of these positions, HIV1 becomes sensitive to huTRIM5α restriction, a phenomenon reinforced by additionally mutating the nearby cyclophilin A (CypA)-binding loop of the viral protein. These results indicate that retroviruses have evolved similar mechanisms to escape TRIM5α restriction, via the interference of structurally homologous determinants in the viral capsid.