963 resultados para Mass spectroscopy


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Proteomics, the analysis of expressed proteins, has been an important developing area of research for the past two decades [Anderson, NG, Anderson, NL. Twenty years of two-dimensional electrophoresis: past, present and future. Electrophoresis 1996;17:443-53]. Advances in technology have led to a rapid increase in applications to a wide range of samples; from initial experiments using cell lines, more complex tissues and biological fluids are now being assessed to establish changes in protein expression. A primary aim of clinical proteomics is the identification of biomarkers for diagnosis and therapeutic intervention of disease, by comparing the proteomic profiles of control and disease, and differing physiological states. This expansion into clinical samples has not been without difficulties owing to the complexity and dynamic range in plasma and human tissues including tissue biopsies. The most widely used techniques for analysis of clinical samples are surface-enhanced laser desorption/ionisation mass spectrometry (SELDI-MS) and 2-dimensional gel electrophoresis (2-DE) coupled to matrix-assisted laser desorption ionisation [Person, MD, Monks, TJ, Lau, SS. An integrated approach to identifying chemically induced posttranslational modifications using comparative MALDI-MS and targeted HPLC-ESI-MS/MS. Chem. Res. Toxicol. 2003;16:598-608]-mass spectroscopy (MALDI-MS). This review aims to summarise the findings of studies that have used proteomic research methods to analyse samples from clinical studies and to assess the impact that proteomic techniques have had in assessing clinical samples. © 2004 The Canadian Society of Clinical Chemists. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

2-(2-pyridyl)phenyl(p-ethoxyphenyl)tellurium(II), (RR1Te) reacts with HgC12 at room temperature to give white HgCl2.RR1Te. On setting aside, or on warming the reaction mixture a yellow material, [R1HgCl.(RTeCl)2] is formed. Multinuclear NMR(125Te, 199Hg, 1H) and mass spectroscopy confirm the formulation, and confirm the ease of transfer of the p-ethoxyphenyl group (R1) between the metal centres. The crystal structure of the yellow material consists of two discrete RTeCl molecules together with a R1HgCl molecule. There is no dative bond formation between these species, hence the preferred description of the formation of an inclusion complex. The reaction of RR1Te with Copper(I) chloride in the cold gives an air sensitive yellow product Cu3Cl3(RR1Te)2(0.5CH3CN); under reflux in air changes to the green Cu2Cl(RR1Te)(0.5 EtOH). By contrast, the reaction of RR1Te with acetonitrile solution of Copper(II) salts under mild conditions affords the white materials CuCl(RR1Te) and CuBr(RR1Te)H2O. RR1Te reacts with PdCl2 and PtCl2 to give materials albeit not well defined, can be seen as intermediates to the synthesis of inorganic phase of the type M3XTe2XCl2X. Paramagnetism is associated with some of the palladium and platinum products. The 195Pt NMR measurement in DMSO establishes the presence of six platinum species, which are assigned to Pt(IV), Pt(III) or Pt(II). The reactions show that in the presence of PdCl2 or PtCl2 both R and R1 are very labile. The reaction of RHgCl(R= 2-(2-pyridyl)phenyl) with SeX4(X= Cl, Br) gives compounds which suggest that both Trans-metallation and redox processes are involved. By varying reaction conditions materials which appear to be intermediates in the trans-metallation process are isolated. Potentially bidentate tellurium ligands having molecular formula RTe(CH2)nTeR,Ln, (R= Ph,(t-Bu). C6H4, n = 5,10) are prepared. Palladium and Platinum complexes containing these ligands are prepared. Also complex Ph3SnC1L(L = p-EtO.C6H4) is prepared.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The main aim of the work is to investigate sequential pyrolysis of willow SRC using two different heating rates (25 and 1500 °C/min) between 320 and 520 °C. Thermogravimetric analysis (TGA) and pyrolysis - gas chromatography - mass spectroscopy (Py-GC-MS) have been used for this analysis. In addition, laboratory scale processing has been undertaken to compare product distribution from fast and slow pyrolysis at 500 °C. Fast pyrolysis was carried out using a 1 kg/h continuous bubbling fluidized bed reactor, and slow pyrolysis using a 100 g batch reactor. Findings from this study show that heating rate and pyrolysis temperatures have a significant influence on the chemical content of decomposition products. From the analytical sequential pyrolysis, an inverse relationship was seen between the total yield of furfural (at high heating rates) and 2-furanmethanol (at low heating rates). The total yield of 1,2-dihydroxybenzene (catechol) was found to be significant higher at low heating rates. The intermediates of catechol, 2-methoxy-4-(2-propenyl)phenol (eugenol); 2-methoxyphenol (guaiacol); 4-Hydroxy-3,5-dimethoxybenzaldehyde (syringaldehyde) and 4-hydroxy-3-methoxybenzaldehyde (vanillin), were found to be highest at high heating rates. It was also found that laboratory scale processing alters the pyrolysis bio-oil chemical composition, and the proportions of pyrolysis product yields. The GC-MS/FID analysis of fast and slow pyrolysis bio-oils reveals significant differences. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The organic matter in five oil shales (three from the Kimmeridge Clay sequence, one from the Oxford Clay sequence and one from the Julia Creek deposits in Australia) has been isolated by acid demineralisation, separated into kerogens and bitumens by solvent extraction and then characterised in some detail by chromatographic, spectroscopic and degradative techniques. Kerogens cannot be characterised as easily as bitumens because of their insolubility, and hence before any detailed molecular information can be obtained from them they must be degraded into lower molecular weight, more soluble components. Unfortunately, the determination of kerogen structures has all too often involved degradations that were far too harsh and which lead to destruction of much of the structural information. For this reason a number of milder more selective degradative procedures have been tested and used to probe the structure of kerogens. These are: 1. Lithium aluminium hydride reduction. - This procedure is commonly used to remove pyrite from kerogens and it may also increase their solubility by reduction of labile functional groups. Although reduction of the kerogens was confirmed, increases in solubility were correlated with pyrite content and not kerogen reduction. 2. O-methylation in the presence of a phase transfer catalyst. - By the removal of hydrogen bond interactions via O-methylation, it was possible to determine the contribution of such secondary interactions to the insolubility of the kerogens. Problems were encountered with the use of the phase transfer catalyst. 3. Stepwise alkaline potassium permanganate oxidation. - Significant kerogen dissolution was achieved using this procedure but uncontrolled oxidation of initial oxidation products proved to be a problem. A comparison with the peroxytrifluoroaceticacid oxidation of these kerogens was made. 4. Peroxytrifluoroacetic acid oxidation. - This was used because it preferentially degrades aromatic rings whilst leaving any benzylic positions intact. Considerable conversion of the kerogens into soluble products was achieved with this procedure. At all stages of degradation the products were fully characterised where possible using a variety of techniques including elemental analysis, solution state 1H and 13C nuclear magnetic resonance, solid state 13C nuclear magnetic resonance, gel-permeationchromatography, gas chromatography-mass spectroscopy, fourier transform infra-red spectroscopy and some ultra violet-visible spectroscopy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The synthetic hectorite, laponite has been used within the paper industry to produce mildly conducting paper for use in electrographic printing. The aim of this research was to modify laponite in order to improve the electrical conductivity. In a continuation of a previous investigation involving organotin intercalation of laponite, the organotin precursor (p-CH3,OC6H4)4Sn was synthesised and characterised using Mass Spectroscopy, Infrared Spectroscopy and elemental analysis. Results of intercalation with this compound and a range of organobismuth and organoantimony compounds suggested that a halide content within the precursor was necessary for improvement in conductivity to be observed. Organometallic intercalation of a range of organotellurium compounds with laponite provided evidence that a hydrolysis reaction on the clay surface followed by the release of hydrochloric acid was an important first step if a reaction was to occur with the clay. Atomic Absorption Spectroscopy studies have shown that the acid protons underwent exchange with the interlayer sodium ions in the clay to varying degrees. Gas-liquid Chromatography and Infrared Spectroscopy revealed that the carbon-tellurium bond remained intact. Powder X-ray diffraction revealed that there had been no increase in the basal spacing. The a.c. conductivity of the modified clays in the form of pressed discs was studied over a frequency range of 12Hz - 100kHz using two electrode systems, silver paste and stainless steel. The a.c. conductivity consists of two components, ionic and reactive. The conductivity of laponite was increased by intercalation with organometallic compounds. The most impressive increase was gained using the organotellurium precursor (p-CH3OC6H4)2TeCl2. Conductivity investigations using the stainless steel electrode where measurements are made under pressure showed that in the case of laponite, where poor particle-particle contact exists at ambient pressure, there is a two order of magnitude increase in the measured a.c. conductivity. This significant increase was not seen in modified laponites where the particle-particle contact had already been improved upon. Investigations of the clay surface using Scanning Electron Microscopy suggested that the improvement in particle-particle contact is the largest factor in the determination of the conductivity. The other important factor is the nature and the concentration of the interlayer cations. A range of clays were synthesised in order to increase the concentration of sodium interlayer cations. A sol-gel method was employed to carry out these syntheses. A conductivity evaluation showed that increasing the concentration of the sodium cations within the clay led to an increase in the conductivity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The infra-red detector material cadmium mercury telluride can be grown by the technique of Metal Organic Vapour Phase Epitaxy using simple alkyl telluride compounds as the source of tellurium. New tellurium precursors are required in order to overcome handling and toxicity problems and to reduce the growth temperature in preparing the material. A range of diaryltellurium(IV) dicarboxylates and some 2-(2'-pyridyl)phenyl-tellurium(II) and tellurium(IV) monocarboxylates have been synthesised and characterised by infra-red, 13C N.M.R. and mass spectroscopy. Infra-red spectroscopy has been used to determine the mode of bonding of the carboxylate ligand to tellurium. Synthetic methods have been devised for the preparation of diorganotritellurides (R2Te3) and mixed diorganotetrachalcogenides (RTeSeSeTeR). A mechanism for the formation of the tritellurides based on aerobic conditions is proposed. The reaction of ArTe- with (ClCH2CH2)3N leads to tripod-like multidentate ligands (ArTeCH2CH2)3N which form complexes with the ions Hg(II), Cd(II), Cu(I), Pt(II) and Pd(II). Synthetic routes to aryltelluroalkylamines and arylselenoalkylamines are also reported. The crystal structure of 2-(2'-pyridyl)phenyltellurium(II) bromide has been solved in which there are six molecules present within the unit cell. There are no close intermolecular Te---Te interactions and the molecules are stabilised by short Te---N intramolecular contacts. The crystal structure of 2-(2'-pyridyl)phenylselenium(II)-tribromomercurate(II) is also presented. A study of the Raman vibrational spectra of some tellurated azobenzenes and 2-phenylpyridines shows spectra of remarkably far superior quality to those obtained using infra-red spectroscopy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The kinetics of the metathesis of 1-hexene using Re2O7/-Al_2O_3 as the catalyst were investigated under a variety of conditions. The experiments were carried out under high vacuum conditions. The product solutions were characterised by gas liquid chromatography and mass spectroscopy. The initial kinetics of the metathesis of 1-hexene showed that the reaction was first order in the weight of the catalyst and second order in the concentration of 1-hexene. A kinetic scheme which correlated the experimental data with the metallocarbene chain mechanism postulated by Herisson and Chauvin and the kinetics of the reaction was explained using a model based on the Langmuir-Hinshelwood theory. The low conversion of 1-hexene to its products is due to termination reactions which most likely occur by the decomposition of the metallocyclobutane intermediate to produce a cyclopropane derivative and an inactive centre. The optimum temperature for the metathesis of 1-hexene over Re_2O_7/-Al2O3 is 45oC and above this temperature, the rate of metathesis decreases rapidly. Co-catalysts alter the active sites for metathesis so that the catalyst is more selective to the metathesis of 1-hexene. However, the regeneration of metathesis activity is much worse for promoted catalysts than for the unpromoted. The synthesis and metathesis of 4,4-dimethyl-2-allowbreak (9-decenyl)-1,3-oxazoline and 4,4-dimethyl-2-allowbreak (3-pentenyl)-1,3-oxazoline was attempted and the products were analysed by thin layer chromatography, infra-red, 13C and 1H nmr and mass spectroscopy. Obtaining the oxazolines in a good yield with high purity was difficult and consequently metathesis of the impure products did not occur.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The production and uses of coal tar are reviewed as are the uses of steroids and cytotoxic agents in the treatment of psoriasis with a review of the condition also. An attempt was made to improve the efficaciousness and cosmetic acceptability of a low temperature tar, by screening fractions of this tar, derived from a variety of separation procedures. The most efficacious fraction was the highest boiling acid fraction, which is believed to consist mainly of mono- and di-hydric phenols. A time and concentration study showed that the optimum regime was the application of a 10% concentration in 5% wool fat in soft, yellow paraffin daily for 21 days. The mouse tail skin was selected as an experimental model, to ascertain the efficaciousness of fractions, because of the similarities between this skin and the psoriatic lesion. The activity of a fraction was monitored by the inducement of a granular layer in the mouse tail epidermis. Because coal tar is not an easy medium to work with, and the active fractions showed no increase in cosmetic acceptability over the parent coal tar, likely coal tar constituents were selected for screening on the basis of phenolic character, and the molecular weight range elucidated by mass spectroscopy. 32 potential anti-psoriatic agents were screened on mouse tail. Two catechols, 3,5-di-t-butyl and 4-t-butyl catechols were active. Other structures showed little or no activity. 24 catechols were screened and two extremely active catechols were discovered, 3-methyl-5-t-octyl and 5-methyl-3-t-octyl catechols. The screening of catechol-rich coal tar fractions and a coal tar fraction which had had the catechols removed by oxidation, showed that some anti-psoriatic activity was contained in the catechol fraction of coal tar. Attempts to elucidate the mode of action of these two compounds met with little success, but two modes of action are suggested.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For six decades tetracyclines have been successfully used for their broad spectrum antibiotic effects. However, non-antibiotic effects of tetracyclines have been reported. The anti-inflammatory effects of tetracycline drugs have been investigated in the context of a range of inflammatory diseases including sepsis and a number of neurodegenerative diseases. This thesis investigates the effects of a range of clinically important tetracyclines (oxytetracycline, doxycycline, minocycline and tigecycline) on the ability of the J774.2 cell line to produce nitric oxide when stimulated with the bacterial cell wall component, LPS. The proteome of J774.2 cells was analysed in response to LPS stimulation (1 µg/ml) with and without prior treatment with minocycline (50µg/ml), this allows the unbiased analysis of the cellular proteome in response to minocycline and LPS, protein spots of interest were excised and identified by nano-electrospray ionisation-linear ion trap mass spectroscopy. All of the tetracyclines that were investigated inhibited LPS-induced nitric oxide production in a dose dependent manner and this was due to the inhibition of inducible nitric oxide synthase expression. This is the first report to show that tigecycline inhibits inducible nitric oxide expression and nitric oxide production. Using two-dimensional gel electrophoresis and total protein staining eleven proteins were identified as being modulated by LPS. Of these eleven proteins; expression of some, but not all was modulated when the cells received a prior treatment with minocycline suggesting that minocycline does not completely block LPS-induced macrophage activation but probably specifically acts on particular inflammatory signaling pathways in macrophages. Three protein spots with a similar molecular weight but different pI values identified in this proteomic study were identified as ATP synthase ß chain. These different protein spots probably correspond to different phosphorylation states of the protein, suggesting that minocycline affects the balance of protein kinase and protein phosphatase activity in the immune response.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The production of agricultural and horticultural products requires the use of nitrogenous fertiliser that can cause pollution of surface and ground water and has a large carbon footprint as it is mainly produced from fossil fuels. The overall objective of this research project was to investigate fast pyrolysis and in-situ nitrogenolysis of biomass and biogenic residues as an alternative route to produce a sustainable solid slow release fertiliser mitigating the above stated problems. A variety of biomasses and biogenic residues were characterized by proximate analysis, ultimate analysis, thermogravimetric analysis (TGA) and Pyrolysis – Gas chromatography – Mass Spectroscopy (Py–GC–MS) for their potential use as feedstocks using beech wood as a reference material. Beech wood was virtually nitrogen free and therefore suitable as a reference material as added nitrogen can be identified as such while Dried Distillers Grains with Solubles (DDGS) and rape meal had a nitrogen content between 5.5wt.% and 6.1wt.% qualifying them as high nitrogen feedstocks. Fast pyrolysis and in-situ nitrogenolysis experiments were carried out in a continuously fed 1kg/h bubbling fluidized bed reactor at around 500°C quenching the pyrolysis vapours with isoparaffin. In-situ nitrogenolysis experiments were performed by adding ammonia gas to the fast pyrolysis reactor at nominal nitrogen addition rates between 5wt.%C and 20wt.%C based on the dry feedstock’s carbon content basis. Mass balances were established for the processing experiments. The fast pyrolysis and in-situ nitrogenolysis products were characterized by proximate analysis, ultimate analysis and GC– MS. High liquid yields and good mass balance closures of over 92% were obtained. The most suitable nitrogen addition rate for the in-situ nitrogenolysis experiments was determined to be 12wt.%C on dry feedstock carbon content basis. However, only a few nitrogen compounds that were formed during in-situ nitrogenolysis could be identified by GC–MS. A batch reactor process was developed to thermally solidify the fast pyrolysis and in-situ nitrogenolysis liquids of beech wood and Barley DDGS producing a brittle solid product. This was obtained at 150°C with an addition of 2.5wt% char (as catalyst) after a processing time of 1h. The batch reactor was also used for modifying and solidifying fast pyrolysis liquids derived from beech wood by adding urea or ammonium phosphate as post processing nitrogenolysis. The results showed that this type of combined approach was not suitable to produce a slow release fertiliser, because the solid product contained up to 65wt.% of highly water soluble nitrogen compounds that would be released instantly by rain. To complement the processing experiments a comparative study via Py–GC–MS with inert and reactive gas was performed with cellulose, hemicellulose, lignin and beech wood. This revealed that the presence of ammonia gas during analytical pyrolysis did not appear to have any direct impact on the decomposition products of the tested materials. The chromatograms obtained showed almost no differences between inert and ammonia gas experiments indicating that the reaction between ammonia and pyrolysis vapours does not occur instantly. A comparative study via Fourier Transformed Infrared Spectroscopy of solidified fast pyrolysis and in-situ nitrogenolysis products showed that there were some alterations in the spectra obtained. A shift in frequencies indicating C=O stretches typically related to the presence of carboxylic acids to C=O stretches related to amides was observed and no double or triple bonded nitrogen was detected. This indicates that organic acids reacted with ammonia and that no potentially harmful or non-biodegradable triple bonded nitrogen compounds were formed. The impact of solid slow release fertiliser (SRF) derived from pyrolysis and in-situ nitrogenolysis products from beech wood and Barley DDGS on microbial life in soils and plant growth was tested in cooperation with Rothamsted Research. The microbial incubation tests indicated that microbes can thrive on the SRFs produced, although some microbial species seem to have a reduced activity at very high concentrations of beech wood and Barley DDGS derived SRF. The plant tests (pot trials) showed that the application of SRF derived from beech wood and barley DDGS had no negative impact on germination or plant growth of rye grass. The fertilizing effect was proven by the dry matter yields in three harvests after 47 days, 89 days and 131 days. The findings of this research indicate that in general a slow release fertiliser can be produced from biomass and biogenic residues by in-situ nitrogenolysis. Nevertheless the findings also show that additional research is necessary to identify which compounds are formed during this process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The crystal structure and magnetic properties of a penta-coordinate iron(III) complex of pyridoxal-4-methylthiosemicarbazone, [Fe(Hmthpy)Cl](CHCHSO), are reported. The synthesised ligand and the metal complex were characterised by spectroscopic methods (H NMR, IR, and mass spectroscopy), elemental analysis, and single crystal X-ray diffraction. The complex crystallises as dark brown microcrystals. The crystal data determined at 100(1) K revealed a triclinic system, space group P over(1, ¯) (Z = 2). The ONSCl geometry around the iron(III) atom is intermediate between trigonal bipyramidal and square pyramidal (t = 0.40). The temperature dependence of the magnetic susceptibility (5-300 K) is consistent with a high spin Fe(III) ion (S = 5/2) exhibiting zero-field splitting. Interpretation of these data yielded: D = 0.34(1) cm and g = 2.078(3). © 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study experimentally investigated methyl chloride (MeCl) purification method using an inhouse designed and built volumetric adsorption/desorption rig. MeCl is an essential raw material in the manufacture of silicone however all technical grades of MeCl contain concentrations (0.2 - 1.0 % wt) of dimethyl ether (DME) which poison the process. The project industrial partner had previously exhausted numerous separation methods, which all have been deemed not suitable for various reasons. Therefore, adsorption/desorption separation was proposed in this study as a potential solution with less economic and environmental impact. Pure component adsorption/desorption was carried out for DME and MeCl on six different adsorbents namely: zeolite molecular sieves (types 4 Å and 5 Å); silica gels (35-70 mesh, amorphous precipitated, and 35-60 mesh) and granular activated carbon (type 8-12 mesh). Subsequent binary gas mixture adsorption in batch and continuous mode was carried out on both zeolites and all three silica gels following thermal pre-treatment in vacuum. The adsorbents were tested as received and after being subjected to different thermal and vacuum pre-treatment conditions. The various adsorption studies were carried out at low pressure and temperature ranges of 0.5 - 3.5 atm and 20 - 100 °C. All adsorbents were characterised using Brunauer Emmett Teller (BET), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and energy dispersive x-ray analysis (EDXA) to investigate their physical and chemical properties. The well-known helium (He) expansion method was used to determine the empty manifold and adsorption cell (AC) regions and respective void volumes for the different adsorbents. The amounts adsorbed were determined using Ideal gas laws via the differential pressure method. The heat of adsorption for the various adsorbate-adsorbent (A-S) interactions was calculated using a new calorimetric method based on direct temperature measurements inside the AC. Further adsorption analysis included use of various empirical and kinetic models to determine and understand the behaviour of the respective interactions. The gas purification behaviour was investigated using gas chromatography and mass spectroscopy (GC-MC) analysis. Binary gas mixture samples were syringed from the manifold iii and AC outlet before and after adsorption/desorption analysis through manual sample injections into the GC-MS to detect and quantify the presence of DME and ultimately observe for methyl chloride purification. Convincing gas purification behaviour was confirmed using two different GC columns, thus giving more confidence on the measurement reliability. From the single pure component adsorption of DME and MeCl on the as received zeolite 4A subjected to 1 h vacuum pre-treatment, both gases exhibited pseudo second order adsorption kinetics with DME exhibiting a rate constant nearly double that of MeCl thus suggesting a faster rate of adsorption. From the adsorption isotherm classification both DME and MeCl exhibited Type II and I adsorption isotherm classifications, respectively. The strength of bonding was confirmed by the differential heat of adsorption measurement, which was found to be 23.30 and 10.21 kJ mol-1 for DME and MeCl, respectively. The former is believed to adsorb heterogeneously through hydrogen bonding whilst MeCl adsorbs homogenously via van der Waal’s (VDW) forces. Single pure component adsorption on as received zeolite 5A, silica gels (35-70, amorphous precipitated and 35-60) resulted in similar adsorption/desorption behaviour in similar quantities (mol kg-1). The adsorption isotherms for DME and MeCl on zeolite 5A, silica gels (35-70, amorphous precipitated and 35-60) and activated carbon 8-12 exhibited Type I classifications, respectively. Experiments on zeolite 5A indicated that DME adsorbed stronger, faster and with a slightly stronger strength of interaction than MeCl but in lesser quantities. On the silica gels adsorbents, DME exhibited a slightly greater adsorption capacity whilst adsorbing at a similar rate and strength of interaction compared to MeCl. On the activated carbon adsorbent, MeCl exhibited the greater adsorption capacity at a faster rate but with similar heats of adsorption. The effect of prolonged vacuum (15 h), thermal pre-treatment (150 °C) and extended equilibrium time (15 min) were investigated for the adsorption behaviour of DME and MeCl on both zeolites 4A and 5A, respectively. Compared to adsorption on as received adsorbents subjected to 1 h vacuum the adsorption capacities for DME and MeCl were found to increase by 1.95 % and 20.37 % on zeolite 4A and by 4.52 % and 6.69 % on zeolite 5A, respectively. In addition the empirical and kinetic models and differential heats of adsorption resulted in more definitive fitting curves and trends due to the true equilibrium position of the adsorbate with the adsorbent. Batch binary mixture adsorption on thermally and vacuum pre-treated zeolite 4A demonstrated purification behaviour of all adsorbents used for MeCl streams containing DME impurities, with a concentration as low as 0.66 vol. %. The GC-MS analysis showed no DME detection for the tested concentration mixtures at the AC outlet after 15 or 30 min, whereas MeCl was detectable in measurable amounts. Similar behaviour was also observed when carrying out adsorption in continuous mode. On the other hand, similar studies on the other adsorbents did not show such favourable MeCl purification behaviour. Overall this study investigated a wide range of adsorbents (zeolites, silica gels and activated carbon) and demonstrated for the first time potential to purify MeCl streams containing DME impurities using adsorption/desorption separation under different adsorbent pre-treatment and adsorption operating conditions. The study also revealed for the first time the adsorption isotherms, empirical and kinetic models and heats of adsorption for the respective adsorbentsurface (A-S) interactions. In conclusion, this study has shown strong evidence to propose zeolite 4A for adsorptive purification of MeCl. It is believed that with a technical grade MeCl stream competitive yet simultaneous co-adsorption of DME and MeCl occurs with evidence of molecular sieiving effects whereby the larger DME molecules are unable to penetrate through the adsorbent bed whereas the smaller MeCl molecules diffuse through resulting in a purified MeCl stream at the AC outlet. Ultimately, further studies are recommended for increased adsorption capacities by considering wider operating conditions, e.g. different adsorbent thermal and vacuum pre-treatment and adsorbing at temperatures closer to the boiling point of the gases and different conditions of pressure and temperature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is projected that by 2020, there will be 138 million Americans over 45, the age at which the increased incidence of heart diseases is documented. Many will require stents. This multi-billion dollar industry, with over 2 million patients worldwide, 15% of whom use Nitinol stents have experienced a decline in sales recently, due in part to thrombosis. It is a sudden blood clot that forms inside stents. As a result, the Food and Drug Administration and American Heart Association are calling for a new generation of stents, new designs and different alloys that are more adaptable to the arteries. The future of Nitinol therefore depends on a better understanding of the mechanisms by which Nitinol surfaces can be rendered stable and inert. In this investigation, binary and ternary Nitinol alloys were prepared and subjected to various surface treatments such as electropolishing (EP), magnetoelectropolishing (MEP) and water boiling & passivation (W&P). In vitro corrosion tests were conducted on Nitinol alloys in accordance with ASTM F 2129-08. The metal ions released into the electrolyte during corrosion tests were measured by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). Biocompatibility was assessed by observing the growth of human umbilical vein endothelial cells (HUVEC) on the surface of Nitinol alloys. Static and dynamic immersion tests were performed by immersing the Nitinol alloys in cell culture media and measuring the amount of metal ions released in solution. Sulforhodamine B (SRB) assays were performed to elucidate the effect of metal ions on the growth of HUVEC cells. The surfaces of the alloys were studied using Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS) respectively. Finally, wettability and surface energy were measured by Contact Angle Meter, whereas surface roughness was measured by Atomic Force Microscopy (AFM). All the surface treated alloys exhibited high resistance to corrosion when compared with untreated alloys. SRB assays revealed that Ni and Cu ions exhibited greater toxicity than Cr, Ta and Ti ions on HUVEC cells. EP and MEP alloys possessed relatively smooth surfaces and some were composed of nickel oxides instead of elemental nickel as determined by XPS. MEP exhibited lowest surface energy and lowest surface roughness.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent studies have established that yolk hormones of maternal origin have significant effects on the physiology and behavior of offspring in birds. Herrington (2012) demonstrated that an elevation of progesterone in yolk elevates emotional reactivity in bobwhite quail neonates. Chicks that hatched from progesterone treated eggs displayed increased latency in tonic immobility and did not emerge as quickly from a covered location into an open field compared to control groups. For the present study, three experimental groups were formed: chicks hatched from eggs with artificially elevated progesterone (P), chicks hatched from an oil-vehicle control group (V), and chicks hatched from a non-manipulated control group (C). Experiment 1 examined levels of progesterone with High Performance Liquid Chromatography/tandem Mass Spectroscopy (HPLC/MS) from prenatal day 1 to prenatal day 17 in bobwhite quail egg yolk. In Experiment 2, bobwhite quail embryos were passively exposed to an individual maternal assembly call for 24 hours prior to hatching. Chicks were then tested individually for their preference between the familiarized call and a novel call at 24 and 48 hours following hatching. For Experiment 3, newly hatched chicks were exposed to an individual maternal assembly call for 24-hrs. Chicks were then tested for their preference for the familiarized call at 24 and 48-hrs after hatch. Results of Experiment 1 showed that yolk progesterone levels were significantly elevated in treated eggs and were present in the egg yolk longer into prenatal development than the two control groups. Results from Experiment 2 indicated that chicks from the P group failed to demonstrate a preference for the familiar bobwhite maternal assembly call at 24 or 48-hrs after hatch following 24-hrs of prenatal exposure. In contrast, chicks from the C and V groups demonstrated a significant preference for the familiarized call. In Experiment 3, chicks from the P group showed an enhanced preference for the familiarized bobwhite maternal call compared to chicks from the C and V groups at 24 and 48-hrs after hatch. The results of these experiments suggest that elevated maternal yolk hormone levels in pre-incubated bobwhite quail eggs can influence auditory perceptual learning in embryos and neonates.^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is projected that by 2020, there will be 138 million Americans over 45, the age at which the increased incidence of heart diseases is documented. Many will require stents. This multi-billion dollar industry, with over 2 million patients worldwide, 15% of whom use Nitinol stents have experienced a decline in sales recently, due in part to thrombosis. It is a sudden blood clot that forms inside stents. As a result, the Food and Drug Administration and American Heart Association are calling for a new generation of stents, new designs and different alloys that are more adaptable to the arteries. The future of Nitinol therefore depends on a better understanding of the mechanisms by which Nitinol surfaces can be rendered stable and inert. In this investigation, binary and ternary Nitinol alloys were prepared and subjected to various surface treatments such as electropolishing (EP), magnetoelectropolishing (MEP) and water boiling & passivation (W&P). In vitro corrosion tests were conducted on Nitinol alloys in accordance with ASTM F 2129-08. The metal ions released into the electrolyte during corrosion tests were measured by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). Biocompatibility was assessed by observing the growth of human umbilical vein endothelial cells (HUVEC) on the surface of Nitinol alloys. Static and dynamic immersion tests were performed by immersing the Nitinol alloys in cell culture media and measuring the amount of metal ions released in solution. Sulforhodamine B (SRB) assays were performed to elucidate the effect of metal ions on the growth of HUVEC cells. The surfaces of the alloys were studied using Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS) respectively. Finally, wettability and surface energy were measured by Contact Angle Meter, whereas surface roughness was measured by Atomic Force Microscopy (AFM). All the surface treated alloys exhibited high resistance to corrosion when compared with untreated alloys. SRB assays revealed that Ni and Cu ions exhibited greater toxicity than Cr, Ta and Ti ions on HUVEC cells. EP and MEP alloys possessed relatively smooth surfaces and some were composed of nickel oxides instead of elemental nickel as determined by XPS. MEP exhibited lowest surface energy and lowest surface roughness.