961 resultados para Mass Transfer Coefficient
Resumo:
This paper explores the possibility of using the Moire-Fourier deflectometry for measuring the local heat transfer coefficient inside small confined flows (micro-channels) and their relevance for checking theoretical models. This optical technique, supplemented with a digital image processing method of fringes, is applied for studying the local heat transfer over a backward facing step. The experimental results are compared with numerical results obtained from a commercial code, which has been contrasted with relevant solutions from the literature and bulk fluid temperature measurements at the inlet and outlet sections. In order to show the possibilities of the experimental technique, the influence of assuming an adiabatic wall on the numerical heat-transfer model is examined and the degree of agreement is discussed. As a result, the paper shows that the proposed Moiré-Fourier technique is a simple experimental setup suitable for temperature measurements with an accuracy similar to the thermocouples but with a spatial resolution near 0.01 mm.Moiré-Fourier deflectometry for local heat transfer measurement over a backward-facing step
Resumo:
Óleo de soja epoxidado (OSE) é um produto químico há muito tempo utilizado como co-estabilizante e plastificante secundário do poli (cloreto de vinila) (PVC), ou seja, como um material que tem limitações na quantidade máxima que pode ser usada no composto de PVC. A sua aplicação como plastificante primário, ou seja, como o principal elemento plastificante no composto de PVC, e como base para outros plastificantes de fontes renováveis, tem aumentado nos últimos anos, principalmente devido a melhorias de desempenho e à redução do custo do OSE em comparação com plastificantes tradicionais. A reação de epoxidação do óleo de soja é bem conhecida e ocorre em duas fases líquidas, com reações em ambas as fases, e transferência de massa entre as fases. O processo industrial mais utilizado conta com formação in-situ do ácido perfórmico, através da adição gradativa do principal reagente, o peróxido de hidrogênio a uma mistura agitada de ácido fórmico e óleo de soja refinado. Industrialmente, o processo é realizado em batelada, controlando a adição do reagente peróxido de hidrogênio de forma que a geração de calor não ultrapasse a capacidade de resfriamento do sistema. O processo tem um ciclo que pode variar entre 8 e 12 horas para atingir a conversão desejada, fazendo com que a capacidade de produção seja dependente de investimentos relativamente pesados em reatores agitados mecanicamente, que apresentam diversos riscos de segurança. Estudos anteriores não exploram em profundidade algumas potenciais áreas de otimização e redução das limitações dos processos, como a intensificação da transferência de calor, que permite a redução do tempo total de reação. Este trabalho avalia experimentalmente e propõe uma modelagem para a reação de epoxidação do óleo de soja em condições de remoção de calor máxima, o que permite que os reagentes sejam adicionados em sua totalidade no início da reação, simplificando o processo. Um modelo foi ajustado aos dados experimentais. O coeficiente de troca térmica, cuja estimativa teórica pode incorrer em erros significativos, foi calculado a partir de dados empíricos e incluído na modelagem, acrescentando um fator de variabilidade importante em relação aos modelos anteriores. O estudo propõe uma base teórica para potenciais alternativas aos processos adotados atualmente, buscando entender as condições necessárias e viáveis em escala industrial para redução do ciclo da reação, podendo inclusive apoiar potenciais estudos de implementação de um reator contínuo, mais eficiente e seguro, para esse processo.
Resumo:
Different non-Fourier models of heat conduction have been considered in recent years, in a growing area of applications, to model microscale and ultrafast, transient, nonequilibrium responses in heat and mass transfer. In this work, using Fourier transforms, we obtain exact solutions for different lagging models of heat conduction in a semi-infinite domain, which allow the construction of analytic-numerical solutions with prescribed accuracy. Examples of numerical computations, comparing the properties of the models considered, are presented.
Resumo:
Large-eddy simulation is used to predict heat transfer in the separated and reattached flow regions downstream of a backward-facing step. Simulations were carried out at a Reynolds number of 28 000 (based on the step height and the upstream centreline velocity) with a channel expansion ratio of 1.25. The Prandtl number was 0.71. Two subgrid-scale models were tested, namely the dynamic eddy-viscosity, eddy-diffusivity model and the dynamic mixed model. Both models showed good overall agreement with available experimental data. The simulations indicated that the peak in heat-transfer coefficient occurs slightly upstream of the mean reattachment location, in agreement with experimental data. The results of these simulations have been analysed to discover the mechanisms that cause this phenomenon. The peak in heat-transfer coefficient shows a direct correlation with the peak in wall shear-stress fluctuations. It is conjectured that the peak in these fluctuations is caused by an impingement mechanism, in which large eddies, originating in the shear layer, impact the wall just upstream of the mean reattachment location. These eddies cause a 'downwash', which increases the local heat-transfer coefficient by bringing cold fluid from above the shear layer towards the wall.
Resumo:
The mathematical modelling underlying passive air sampling theory can be based on mass transfer coefficients or rate constants. Generally, these models have not been inter-related. Starting with basic models, the exchange of chemicals between the gaseous phase and the sampler is developed using mass transfer coefficients and rate constants. Importantly, the inter-relationships between the approaches are demonstrated by relating uptake rate constants and loss rate constants to mass transfer coefficients when either sampler-side or air-side resistance is dominating chemical exchange. The influence of sampler area and sampler volume on chemical exchange is discussed in general terms and as they relate to frequently used parameters such as sampling rates and time to equilibrium. Where air-side or sampler-side resistance dominates, an increase in the surface area of the sampler will increase sampling rates. Sampling rates are not related to the sampler/air partition coefficient (K-SV) when air-side resistance dominates and increase with K-SV when sampler-side resistance dominates.
Resumo:
The published requirements for accurate measurement of heat transfer at the interface between two bodies have been reviewed. A strategy for reliable measurement has been established, based on the depth of the temperature sensors in the medium, on the inverse method parameters and on the time response of the sensors. Sources of both deterministic and stochastic errors have been investigated and a method to evaluate them has been proposed, with the help of a normalisation technique. The key normalisation variables are the duration of the heat input and the maximum heat flux density. An example of application of this technique in the field of high pressure die casting is demonstrated. The normalisation study, coupled with previous determination of the heat input duration, makes it possible to determine the optimum location for the sensors, along with an acceptable sampling rate and the thermocouples critical response-time (as well as eventual filter characteristics). Results from the gauge are used to assess the suitability of the initial design choices. In particular the unavoidable response time of the thermocouples is estimated by comparison with the normalised simulation. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we examine the effect of contact angle (or surface wettability) on the convective heat transfer coefficient in microchannels. Slip flow, where the fluid velocity at the wall is non-zero, is most likely to occur in microchannels due to its dependence on shear rate or wall shear stress. We show analytically that for a constant pressure drop, the presence of slip increases the Nusselt number. In a microchannel heat exchanger we modified the surface wettability from a contact angle of 20 degrees-120 degrees using thin film coating technology. Apparent slip flow is implied from pressure and flow rate measurements with a departure from classical laminar friction coefficients above a critical shear rate of approximately 10,000 s(-1). The magnitude of this departure is dependant on the contact angle with higher contact angles surfaces exhibiting larger pressure drop decreases. Similarly, the non-dimensional heat flux is found to decrease relative to laminar non-slip theory, and this decrease is also a function of the contact angle. Depending on the contact angle and the wall shear rate, variations in the heat transfer rate exceeding 10% can be expected. Thus the contact angle is an important consideration in the design of micro, and even more so, nano heat exchangers. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Local mass transfer coefficients were determined by using the electrochemical technique. A simple model of a heat exchanger with segmental nickel tube joined to p.v.c. rods replaced the exchanger tubes. Measurements were made for both no-Ieakage, semi-leakage and total leakage configurations. Baffle-spacings of 47.6 mm, 66.6 mm, 97 mm and 149.2 mm wer studied. Also studied were the overall exchanger pressure drops for each configuration. The comparison of the heat transfer data with this work showed good agreement at high flow rates for the no-leakage case, but the agreement became poor for lower flow rates and leakage configurations. This disagreement was explained by non-analogous driving forces existing in the two systems. The no-leakage data showed length-wise variation of transfer coefficients along the exchanger length. The end compartments showing transfer coefficients inferior by up to 26% compared to tbe internal compartments, depending on Reynolds number. With the introduction of leakage streams this variation however became smaller than the experimental accuracy. A model is outlined to show the characteristic behaviour of individual electrode segments within the compartment. This was able to discriminate between cross and window zones for the no- leakage case, but no such distinction could be made for the leakage case. A flow area was found which, when incorporated in the Reynolds number, enabled the correlation of baffle-cut and baffle-spacing parameters for the no-leakage case . This area is the free flow area determined at the baffle edge. Addition of the leakage area to this flow area resulted in correlation of all commercial leakage geometrical parameters. The procedures used to correlate the pressure drop data from a total of eighteen different configurations on a single curve are also outlined.
Resumo:
Foaming during fermentation reduces the efficiency of the process leading to increased costs and reduced productivity. Foaming can be overcome by the use of chemical antifoaming agents, however their influence upon the growth of organisms and protein yield is poorly understood. The objective of this work was to evaluate the effects of different antifoams on recombinant protein production. Antifoam A, Antifoam C, J673A, P2000 and SB2121 were tested at different concentrations for their effect on the growth characteristics of Pichia pastoris producing GFP, EPO and A2aR and the yield of protein in shake flasks over 48 h. All antifoams tested increased the total GFP in the shake flasks compared to controls, at higher concentrations than would normally be used for defoaming purposes. The highest yield was achieved by adding 1 % P2000 which nearly doubled the total yield followed by 1 % SB2121, 1 % J673A, 0.6 % Antifoam A and lastly 0.8 % Antifoam C. The antifoams had a detrimental effect upon the production of EPO and A2aR in shake flasks, suggesting that their effects may be protein specific. The mechanisms of action of the antifoams was investigated and suggested that although the volumetric mass oxygen transfer coefficient (kLa) was influenced by the agents, their effect upon the concentration of dissolved oxygen did not contribute to the changes in growth or recombinant protein yield. Findings in small scale also suggested that antifoams of different compositions such as silicone polymers and alcoxylated fatty acid esters may influence growth characteristics of host organisms and the ability of the cells to secrete recombinant protein, indirectly affecting the protein yield. Upon scale-up, the concentration effects of the antifoams upon GFP yield in bioreactors was reversed, with lower concentrations producing a higher yield. These data suggest that antifoam can affect cells in a multifactorial manner and highlights the importance of screening for optimum antifoam types and concentrations for each bioprocesses.
Resumo:
The literature relating to the extraction of the aromatics, benzene, toluene and xylene (BTX) using different commercial solvents, and to mixer-settler design and performance, has been reviewed. Liquid-liquid equilibria of the ternary systems: hexane-benzene-sulfolane, n-heptane-toluene-sulfolane, and octane-xylene-sulfolane were determined experimentally at temperatures of 30oC, 35oC, and 40oC. The work was then extended to a multicomponent system. The data were correlated by using Hand's method and were found to be in a good agreement with theoretical predictions using the UNIFAC method. A study was made of the performance of a 10-stage laboratory mixer-settler cascade for the extraction of BTX from a synthetic reformate utilizing sulfolane as a solvent. Murphree stage efficiency decreased with stage number but 99% extraction was achievable within 4 stages. The effects of temperature, phase ratio, and agitator speed were investigated. The efficiency increased with agitator speed but > 1050 rpm resulted in secondary haze formation. An optimum temperature of 30oC was selected from the phase equilibria; the optimum solvent: feed ratio was 3:1 for 4 stages. The experimental overall mass transfer coefficients were compared with those predicted from single drop correlations and were in all cases greater, by a factor of 1.5 to 3, due to the surface renewal associated with drop break-up and coalescence promoted by agitation. A similar investigation was performed using real reformate from the Kuwait Oil Company. The phase ratios were in the range 0.5 to 1 to 3.25 to 1, the agitator speed 1050 rpm, and the operating temperature 30oC. A maximum recovery of 99% aromatics was achieved in 4 stages at a phase ratio of 3.25 to 1. A backflow model was extended to simulate conditions in the mixer-settler cascade with this multicomponent system. Overall mass transfer coefficients were estimated by obtaining the best fit between experimental and predicted concentration profiles. They were up to 10% greater than those with the synthetic feed but close agreement was not possible because the distribution coefficient and phase ratio varied with stage number. Sulfolane was demonstrated to be an excellent solvent for BTX recovery and a mixer-settler cascade was concluded to be a technically viable alternative to agitated columns for this process.
Resumo:
The thesis presents experimental results for shell-side transfer coefficients and pressure drops across four different tube banks, using small-scale models, with yawed tubes, as found in many types of heat exchangers, boilers and nuclear reactors. The tube banks investigated have a staggered tube layout on a rotated square pitch, with a 1.25 pitch-to-diameter ratio. The angle of attack was varied between 45o and 90o. An extensive range of Reynolds number, i.e. 0.5. to 12,600, covering so-called laminar, transition and turbulent flows, was investigated. A diffusion-controlled electrochemical mass transfer technique has been employed to measure mass transfer coefficients. The heat transfer coefficients may be then readily obtained from the mass transfer values by applying the well-established Chilton-Colburn analogy. The results for the normal tube bank, which forms the base case for the study on inclined tube banks, show close agreement with previous work. The transfer coefficients and pressure drops of the inclined tube banks are compared with results from the ideal normal tube bank to examine the effect of inclination angle on heat transfer and pressure drop variations. The variation of the transfer coefficients row-by-row and the entrance and exit effects have also been investigated. An auxilary investigation has been carried out on the role of natural convection. A preliminary correlation of transfer coefficients and pressure drops against the variation in the yaw angle has been attempted. The results are discussed in the light of the few existing theoretical treatments and experimental data for these situations, and recommendations made for future work.
Resumo:
This work is concerned with the nature of liquid flow across industrial sieve trays operating in the spray, mixed, and the emulsified flow regimes. In order to overcome the practical difficulties of removing many samples from a commercial tray, the mass transfer process was investigated in an air water simulator column by heat transfer analogy. The temperature of the warm water was measured by many thermocouples as the water flowed across the single pass 1.2 m diameter sieve tray. The thermocouples were linked to a mini computer for the storage of the data. The temperature data were then transferred to a main frame computer to generate temperature profiles - analogous to concentration profiles. A comprehensive study of the existing tray efficiency models was carried out using computerised numerical solutions. The calculated results were compared with experimental results published by the Fractionation Research Incorporation (FRl) and the existing models did not show any agreement with the experimental results. Only the Porter and Lockett model showed a reasonable agreement with the experimental results for cenain tray efficiency values. A rectangular active section tray was constructed and tested to establish the channelling effect and the result of its effect on circular tray designs. The developed flow patterns showed predominantly flat profiles and some indication of significant liquid flow through the central region of the tray. This comfirms that the rectangular tray configuration might not be a satisfactory solution for liquid maldistribution on sieve trays. For a typical industrial tray the flow of liquid as it crosses the tray from the inlet to the outlet weir could be affected by the mixing of liquid by the eddy, momentum and the weir shape in the axial or the transverse direction or both. Conventional U-shape profiles were developed when the operating conditions were such that the froth dispersion was in the mixed regime, with good liquid temperature distribution while in the spray regime. For the 12.5 mm hole diameter tray the constant temperature profiles were found to be in the axial direction while in the spray regime and in the transverse direction for the 4.5 mm hole tray. It was observed that the extent of the liquid stagnant zones at the sides of the tray depended on the tray hole diameter and was larger for the 4.5 mm hole tray. The liquid hold-up results show a high liquid hold-up at the areas of the tray with low liquid temperatures, this supports the doubts about the assumptions of constant point efficiency across an operating tray. Liquid flow over the outlet weir showed more liquid flow at the centre of the tray at high liquid loading with low liquid flow at both ends of the weir. The calculated results of the point and tray efficiency model showed a general increase in the calculated point and tray efficiencies with an increase in the weir loading, as the flow regime changed from the spray to the mixed regime the point and the tray efficiencies increased from approximately 30 to 80%.Through the mixed flow regime the efficiencies were found to remain fairly constant, and as the operating conditions were changed to maintain an emulsified flow regime there was a decrease in the resulting efficiencies. The results of the estimated coefficient of mixing for the small and large hole diameter trays show that the extent of liquid mixing on an operating tray generally increased with increasing capacity factor, but decreased with increasing weir loads. This demonstrates that above certain weir loads, the effect of eddy diffusion mechanism on the process of liquid mixing on an operating tray to be negligible.
Resumo:
The primary aim of the thesis is to provide a comprehensive investigation of the osmotic dehydration processes in plant tissue. Effort has been concentrated on the modelling for simulating the processes. Two mathematical models for simulating the mass transfer during osmotic dehydration processes in plant tissues are developed and verified using existing experimental data. Both models are based on the mechanism of diffusion and convection of any mobile material that can transport in plant tissues. The mass balance equation for the transport of each constituent is established separately for intracellular and extra-cellular volumes with taking into account the mass transfer across the cell membrane the intracellular and extra-cellular volumes and the shrinkage of the whole tissue. The contribution from turgor pressure is considered in both models. Model two uses Darcy’s law to build the relation between shrinkage velocity and hydrostatic pressure in each volume because the plant tissue can be considered as the porous medium. Moreover, it has been extended to solve the multi-dimensional problems. A lot of efforts have been made to the parameter study and the sensitivity analyses. The parameters investigated including the concentration of the osmotic solution, diffusion coefficient, permeability of the cell membrane, elastic modulus of the cell wall, critical cell volume etc. The models allow us to quantitatively simulate the time evolution of intracellular and extra-cellular volumes as well as the time evolution of concentrations in each cross-section.
Resumo:
Miniature direct methanol fuel cells (DMFCs) are promising micro power sources for portable appliction. Low temperature cofired ceramic (LTCC), a competitive technology for current MEMS based fabrication, provides cost-effective mass manufacturing route for miniature DMFCs. Porous silver tape is adapted as electrodes to replace the traditional porous carbon electrodes due to its compatibility to LTCC processing and other electrochemical advantages. Electrochemical evaluation of silver under DMFCs operating conditions demonstrated that silver is a good electrode for DMFCs because of its reasonable corrosion resistance, low passivating current, and enhanced catalytic effect. Two catalyst loading methods (cofiring and postfiring) of the platinum and ruthenium catalysts are evaluated for LTCC based processing. The electrochemical analysis exhibits that the cofired path out-performs the postfiring path both at the anode and cathode. The reason is the formation of high surface area precipitated whiskers. Self-constraint sintering is utilized to overcome the difficulties of the large difference of coefficient of thermal expansion (CTE) between silver and LTCC (Dupont 951) tape during cofiring. The graphite sheet employed as a cavity fugitive insert guarantees cavity dimension conservation. Finally, performance of the membrane electrode assembly (MEA) with the porous silver electrode in the regular graphite electrode based cell and the integrated cofired cell is measured under passive fuel feeding condition. The MEA of the regular cell performs better as the electrode porosity and temperature increased. The power density of 10 mWcm-2 was obtained at ambient conditions with 1M methanol and it increased to 16 mWcm -2 at 50°C from an open circuit voltage of 0.58V. For the integrated prototype cell, the best performance, which depends on the balance methanol crossover and mass transfer at different temperatures and methanol concentrations, reaches 1.13 mWcm-2 at 2M methanol solution at ambient pressure. The porous media pore structure increases the methanol crossover resistance. As temperature increased to 60°C, the device increases to 2.14 mWcm-2.
Resumo:
This work presents an experimental investigation of thermal hydraulic performance of the nanofluid composed by graphene nanoparticles dispersed in a mixture of water and ethylene glycol at a ratio of 70:30% by volume. The tests were carried out under forced convection inside a circular tube with uniform heat flux on the wall for the laminar-turbulent transition regime. The mass flow rate ranged from 40 to 70 g/s corresponding to Reynolds numbers between 3000 and 7500. The heat flux was maintained constant at values of 11, 16 and 21 kW/m², as well as the inlet temperature of 15, 20 and 25°C. Three samples were produced with the nanofluid volumetric concentration of 0.05%, 0.10% and 0.15%. Thermophysical properties were experimentaly measured for all samples that were critically compared and discussed with theoretical models most commonly used in the literature. Initially, experiments with distilled water confirmed the validity of the experimental equipment for the thermo-hydraulic tests. Therefore, nanofluid samples that showed the highest thermal conductivity, corresponding to the volumetric concentrations of 0.15% and 0.10%, were subjected to the tests. The thermal-hydraulic performance for both samples was unsatisfactory. The heat transfer coefficients for convection of nanofluids reduced 21% in average, for the sample with = 0.15% and 26% and for =0.10%. The pressure drop of the samples was higher than the base fluid. Finally, the pressure drop and heat transfer coefficient by convection of both samples were also compared to theoretical models. The models used for pressure drop showed an excellent agreement with experimental results, which is remarkable considering the transitional flow.