965 resultados para Markov-chain Monte Carlo
Resumo:
Statistical model-based methods are presented for the reconstruction of autocorrelated signals in impulsive plus continuous noise environments. Signals are modelled as autoregressive and noise sources as discrete and continuous mixtures of Gaussians, allowing for robustness in highly impulsive and non-Gaussian environments. Markov Chain Monte Carlo methods are used for reconstruction of the corrupted waveforms within a Bayesian probabilistic framework and results are presented for contaminated voice and audio signals.
Resumo:
In this paper methods are developed for enhancement and analysis of autoregressive moving average (ARMA) signals observed in additive noise which can be represented as mixtures of heavy-tailed non-Gaussian sources and a Gaussian background component. Such models find application in systems such as atmospheric communications channels or early sound recordings which are prone to intermittent impulse noise. Markov Chain Monte Carlo (MCMC) simulation techniques are applied to the joint problem of signal extraction, model parameter estimation and detection of impulses within a fully Bayesian framework. The algorithms require only simple linear iterations for all of the unknowns, including the MA parameters, which is in contrast with existing MCMC methods for analysis of noise-free ARMA models. The methods are illustrated using synthetic data and noise-degraded sound recordings.
Resumo:
The inhomogeneous Poisson process is a point process that has varying intensity across its domain (usually time or space). For nonparametric Bayesian modeling, the Gaussian process is a useful way to place a prior distribution on this intensity. The combination of a Poisson process and GP is known as a Gaussian Cox process, or doubly-stochastic Poisson process. Likelihood-based inference in these models requires an intractable integral over an infinite-dimensional random function. In this paper we present the first approach to Gaussian Cox processes in which it is possible to perform inference without introducing approximations or finitedimensional proxy distributions. We call our method the Sigmoidal Gaussian Cox Process, which uses a generative model for Poisson data to enable tractable inference via Markov chain Monte Carlo. We compare our methods to competing methods on synthetic data and apply it to several real-world data sets. Copyright 2009.
Resumo:
The inhomogeneous Poisson process is a point process that has varying intensity across its domain (usually time or space). For nonparametric Bayesian modeling, the Gaussian process is a useful way to place a prior distribution on this intensity. The combination of a Poisson process and GP is known as a Gaussian Cox process, or doubly-stochastic Poisson process. Likelihood-based inference in these models requires an intractable integral over an infinite-dimensional random function. In this paper we present the first approach to Gaussian Cox processes in which it is possible to perform inference without introducing approximations or finite-dimensional proxy distributions. We call our method the Sigmoidal Gaussian Cox Process, which uses a generative model for Poisson data to enable tractable inference via Markov chain Monte Carlo. We compare our methods to competing methods on synthetic data and apply it to several real-world data sets.
Resumo:
Simulated annealing is a popular method for approaching the solution of a global optimization problem. Existing results on its performance apply to discrete combinatorial optimization where the optimization variables can assume only a finite set of possible values. We introduce a new general formulation of simulated annealing which allows one to guarantee finite-time performance in the optimization of functions of continuous variables. The results hold universally for any optimization problem on a bounded domain and establish a connection between simulated annealing and up-to-date theory of convergence of Markov chain Monte Carlo methods on continuous domains. This work is inspired by the concept of finite-time learning with known accuracy and confidence developed in statistical learning theory.
Resumo:
The search for reliable proxies of past deep ocean temperature and salinity has proved difficult, thereby limiting our ability to understand the coupling of ocean circulation and climate over glacial-interglacial timescales. Previous inferences of deep ocean temperature and salinity from sediment pore fluid oxygen isotopes and chlorinity indicate that the deep ocean density structure at the Last Glacial Maximum (LGM, approximately 20,000 years BP) was set by salinity, and that the density contrast between northern and southern sourced deep waters was markedly greater than in the modern ocean. High density stratification could help explain the marked contrast in carbon isotope distribution recorded in the LGM ocean relative to that we observe today, but what made the ocean's density structure so different at the LGM? How did it evolve from one state to another? Further, given the sparsity of the LGM temperature and salinity data set, what else can we learn by increasing the spatial density of proxy records?
We investigate the cause and feasibility of a highly and salinity stratified deep ocean at the LGM and we work to increase the amount of information we can glean about the past ocean from pore fluid profiles of oxygen isotopes and chloride. Using a coupled ocean--sea ice--ice shelf cavity model we test whether the deep ocean density structure at the LGM can be explained by ice--ocean interactions over the Antarctic continental shelves, and show that a large contribution of the LGM salinity stratification can be explained through lower ocean temperature. In order to extract the maximum information from pore fluid profiles of oxygen isotopes and chloride we evaluate several inverse methods for ill-posed problems and their ability to recover bottom water histories from sediment pore fluid profiles. We demonstrate that Bayesian Markov Chain Monte Carlo parameter estimation techniques enable us to robustly recover the full solution space of bottom water histories, not only at the LGM, but through the most recent deglaciation and the Holocene up to the present. Finally, we evaluate a non-destructive pore fluid sampling technique, Rhizon samplers, in comparison to traditional squeezing methods and show that despite their promise, Rhizons are unlikely to be a good sampling tool for pore fluid measurements of oxygen isotopes and chloride.
Resumo:
162 p.
Resumo:
As técnicas de injeção de traçadores têm sido amplamente utilizadas na investigação de escoamentos em meios porosos, principalmente em problemas envolvendo a simulação numérica de escoamentos miscíveis em reservatórios de petróleo e o transporte de contaminantes em aquíferos. Reservatórios subterrâneos são em geral heterogêneos e podem apresentar variações significativas das suas propriedades em várias escalas de comprimento. Estas variações espaciais são incorporadas às equações que governam o escoamento no interior do meio poroso por meio de campos aleatórios. Estes campos podem prover uma descrição das heterogeneidades da formação subterrânea nos casos onde o conhecimento geológico não fornece o detalhamento necessário para a predição determinística do escoamento através do meio poroso. Nesta tese é empregado um modelo lognormal para o campo de permeabilidades a fim de reproduzir-se a distribuição de permeabilidades do meio real, e a geração numérica destes campos aleatórios é feita pelo método da Soma Sucessiva de Campos Gaussianos Independentes (SSCGI). O objetivo principal deste trabalho é o estudo da quantificação de incertezas para o problema inverso do transporte de um traçador em um meio poroso heterogêneo empregando uma abordagem Bayesiana para a atualização dos campos de permeabilidades, baseada na medição dos valores da concentração espacial do traçador em tempos específicos. Um método do tipo Markov Chain Monte Carlo a dois estágios é utilizado na amostragem da distribuição de probabilidade a posteriori e a cadeia de Markov é construída a partir da reconstrução aleatória dos campos de permeabilidades. Na resolução do problema de pressão-velocidade que governa o escoamento empregase um método do tipo Elementos Finitos Mistos adequado para o cálculo acurado dos fluxos em campos de permeabilidades heterogêneos e uma abordagem Lagrangiana, o método Forward Integral Tracking (FIT), é utilizada na simulação numérica do problema do transporte do traçador. Resultados numéricos são obtidos e apresentados para um conjunto de realizações amostrais dos campos de permeabilidades.
Resumo:
A generalized Bayesian population dynamics model was developed for analysis of historical mark-recapture studies. The Bayesian approach builds upon existing maximum likelihood methods and is useful when substantial uncertainties exist in the data or little information is available about auxiliary parameters such as tag loss and reporting rates. Movement rates are obtained through Markov-chain Monte-Carlo (MCMC) simulation, which are suitable for use as input in subsequent stock assessment analysis. The mark-recapture model was applied to English sole (Parophrys vetulus) off the west coast of the United States and Canada and migration rates were estimated to be 2% per month to the north and 4% per month to the south. These posterior parameter distributions and the Bayesian framework for comparing hypotheses can guide fishery scientists in structuring the spatial and temporal complexity of future analyses of this kind. This approach could be easily generalized for application to other species and more data-rich fishery analyses.
Resumo:
Molecular markers have been demonstrated to be useful for the estimation of stock mixture proportions where the origin of individuals is determined from baseline samples. Bayesian statistical methods are widely recognized as providing a preferable strategy for such analyses. In general, Bayesian estimation is based on standard latent class models using data augmentation through Markov chain Monte Carlo techniques. In this study, we introduce a novel approach based on recent developments in the estimation of genetic population structure. Our strategy combines analytical integration with stochastic optimization to identify stock mixtures. An important enhancement over previous methods is the possibility of appropriately handling data where only partial baseline sample information is available. We address the potential use of nonmolecular, auxiliary biological information in our Bayesian model.
Resumo:
Deep belief networks are a powerful way to model complex probability distributions. However, learning the structure of a belief network, particularly one with hidden units, is difficult. The Indian buffet process has been used as a nonparametric Bayesian prior on the directed structure of a belief network with a single infinitely wide hidden layer. In this paper, we introduce the cascading Indian buffet process (CIBP), which provides a nonparametric prior on the structure of a layered, directed belief network that is unbounded in both depth and width, yet allows tractable inference. We use the CIBP prior with the nonlinear Gaussian belief network so each unit can additionally vary its behavior between discrete and continuous representations. We provide Markov chain Monte Carlo algorithms for inference in these belief networks and explore the structures learned on several image data sets.
Resumo:
Many data are naturally modeled by an unobserved hierarchical structure. In this paper we propose a flexible nonparametric prior over unknown data hierarchies. The approach uses nested stick-breaking processes to allow for trees of unbounded width and depth, where data can live at any node and are infinitely exchangeable. One can view our model as providing infinite mixtures where the components have a dependency structure corresponding to an evolutionary diffusion down a tree. By using a stick-breaking approach, we can apply Markov chain Monte Carlo methods based on slice sampling to perform Bayesian inference and simulate from the posterior distribution on trees. We apply our method to hierarchical clustering of images and topic modeling of text data.
Resumo:
We define a copula process which describes the dependencies between arbitrarily many random variables independently of their marginal distributions. As an example, we develop a stochastic volatility model, Gaussian Copula Process Volatility (GCPV), to predict the latent standard deviations of a sequence of random variables. To make predictions we use Bayesian inference, with the Laplace approximation, and with Markov chain Monte Carlo as an alternative. We find both methods comparable. We also find our model can outperform GARCH on simulated and financial data. And unlike GARCH, GCPV can easily handle missing data, incorporate covariates other than time, and model a rich class of covariance structures.
Resumo:
In this paper, an introduction to Bayesian methods in signal processing will be given. The paper starts by considering the important issues of model selection and parameter estimation and derives analytic expressions for the model probabilities of two simple models. The idea of marginal estimation of certain model parameter is then introduced and expressions are derived for the marginal probability densities for frequencies in white Gaussian noise and a Bayesian approach to general changepoint analysis is given. Numerical integration methods are introduced based on Markov chain Monte Carlo techniques and the Gibbs sampler in particular.
Resumo:
In this paper, an introduction to Bayesian methods in signal processing will be given. The paper starts by considering the important issues of model selection and parameter estimation and derives analytic expressions for the model probabilities of two simple models. The idea of marginal estimation of certain model parameter is then introduced and expressions are derived for the marginal probabilitiy densities for frequencies in white Gaussian noise and a Bayesian approach to general changepoint analysis is given. Numerical integration methods are introduced based on Markov chain Monte Carlo techniques and the Gibbs sampler in particular.