961 resultados para Markov chain Monte Carlo methods
Resumo:
A robust visual tracking system requires an object appearance model that is able to handle occlusion, pose, and illumination variations in the video stream. This can be difficult to accomplish when the model is trained using only a single image. In this paper, we first propose a tracking approach based on affine subspaces (constructed from several images) which are able to accommodate the abovementioned variations. We use affine subspaces not only to represent the object, but also the candidate areas that the object may occupy. We furthermore propose a novel approach to measure affine subspace-to-subspace distance via the use of non-Euclidean geometry of Grassmann manifolds. The tracking problem is then considered as an inference task in a Markov Chain Monte Carlo framework via particle filtering. Quantitative evaluation on challenging video sequences indicates that the proposed approach obtains considerably better performance than several recent state-of-the-art methods such as Tracking-Learning-Detection and MILtrack.
Resumo:
This paper addresses the problem of determining optimal designs for biological process models with intractable likelihoods, with the goal of parameter inference. The Bayesian approach is to choose a design that maximises the mean of a utility, and the utility is a function of the posterior distribution. Therefore, its estimation requires likelihood evaluations. However, many problems in experimental design involve models with intractable likelihoods, that is, likelihoods that are neither analytic nor can be computed in a reasonable amount of time. We propose a novel solution using indirect inference (II), a well established method in the literature, and the Markov chain Monte Carlo (MCMC) algorithm of Müller et al. (2004). Indirect inference employs an auxiliary model with a tractable likelihood in conjunction with the generative model, the assumed true model of interest, which has an intractable likelihood. Our approach is to estimate a map between the parameters of the generative and auxiliary models, using simulations from the generative model. An II posterior distribution is formed to expedite utility estimation. We also present a modification to the utility that allows the Müller algorithm to sample from a substantially sharpened utility surface, with little computational effort. Unlike competing methods, the II approach can handle complex design problems for models with intractable likelihoods on a continuous design space, with possible extension to many observations. The methodology is demonstrated using two stochastic models; a simple tractable death process used to validate the approach, and a motivating stochastic model for the population evolution of macroparasites.
Resumo:
Bayesian experimental design is a fast growing area of research with many real-world applications. As computational power has increased over the years, so has the development of simulation-based design methods, which involve a number of algorithms, such as Markov chain Monte Carlo, sequential Monte Carlo and approximate Bayes methods, facilitating more complex design problems to be solved. The Bayesian framework provides a unified approach for incorporating prior information and/or uncertainties regarding the statistical model with a utility function which describes the experimental aims. In this paper, we provide a general overview on the concepts involved in Bayesian experimental design, and focus on describing some of the more commonly used Bayesian utility functions and methods for their estimation, as well as a number of algorithms that are used to search over the design space to find the Bayesian optimal design. We also discuss other computational strategies for further research in Bayesian optimal design.
Resumo:
Analytically or computationally intractable likelihood functions can arise in complex statistical inferential problems making them inaccessible to standard Bayesian inferential methods. Approximate Bayesian computation (ABC) methods address such inferential problems by replacing direct likelihood evaluations with repeated sampling from the model. ABC methods have been predominantly applied to parameter estimation problems and less to model choice problems due to the added difficulty of handling multiple model spaces. The ABC algorithm proposed here addresses model choice problems by extending Fearnhead and Prangle (2012, Journal of the Royal Statistical Society, Series B 74, 1–28) where the posterior mean of the model parameters estimated through regression formed the summary statistics used in the discrepancy measure. An additional stepwise multinomial logistic regression is performed on the model indicator variable in the regression step and the estimated model probabilities are incorporated into the set of summary statistics for model choice purposes. A reversible jump Markov chain Monte Carlo step is also included in the algorithm to increase model diversity for thorough exploration of the model space. This algorithm was applied to a validating example to demonstrate the robustness of the algorithm across a wide range of true model probabilities. Its subsequent use in three pathogen transmission examples of varying complexity illustrates the utility of the algorithm in inferring preference of particular transmission models for the pathogens.
Resumo:
A computationally efficient sequential Monte Carlo algorithm is proposed for the sequential design of experiments for the collection of block data described by mixed effects models. The difficulty in applying a sequential Monte Carlo algorithm in such settings is the need to evaluate the observed data likelihood, which is typically intractable for all but linear Gaussian models. To overcome this difficulty, we propose to unbiasedly estimate the likelihood, and perform inference and make decisions based on an exact-approximate algorithm. Two estimates are proposed: using Quasi Monte Carlo methods and using the Laplace approximation with importance sampling. Both of these approaches can be computationally expensive, so we propose exploiting parallel computational architectures to ensure designs can be derived in a timely manner. We also extend our approach to allow for model uncertainty. This research is motivated by important pharmacological studies related to the treatment of critically ill patients.
Resumo:
This thesis progresses Bayesian experimental design by developing novel methodologies and extensions to existing algorithms. Through these advancements, this thesis provides solutions to several important and complex experimental design problems, many of which have applications in biology and medicine. This thesis consists of a series of published and submitted papers. In the first paper, we provide a comprehensive literature review on Bayesian design. In the second paper, we discuss methods which may be used to solve design problems in which one is interested in finding a large number of (near) optimal design points. The third paper presents methods for finding fully Bayesian experimental designs for nonlinear mixed effects models, and the fourth paper investigates methods to rapidly approximate the posterior distribution for use in Bayesian utility functions.
Resumo:
Non-rigid image registration is an essential tool required for overcoming the inherent local anatomical variations that exist between images acquired from different individuals or atlases. Furthermore, certain applications require this type of registration to operate across images acquired from different imaging modalities. One popular local approach for estimating this registration is a block matching procedure utilising the mutual information criterion. However, previous block matching procedures generate a sparse deformation field containing displacement estimates at uniformly spaced locations. This neglects to make use of the evidence that block matching results are dependent on the amount of local information content. This paper presents a solution to this drawback by proposing the use of a Reversible Jump Markov Chain Monte Carlo statistical procedure to optimally select grid points of interest. Three different methods are then compared to propagate the estimated sparse deformation field to the entire image including a thin-plate spline warp, Gaussian convolution, and a hybrid fluid technique. Results show that non-rigid registration can be improved by using the proposed algorithm to optimally select grid points of interest.
Resumo:
In this paper we present a new method for performing Bayesian parameter inference and model choice for low count time series models with intractable likelihoods. The method involves incorporating an alive particle filter within a sequential Monte Carlo (SMC) algorithm to create a novel pseudo-marginal algorithm, which we refer to as alive SMC^2. The advantages of this approach over competing approaches is that it is naturally adaptive, it does not involve between-model proposals required in reversible jump Markov chain Monte Carlo and does not rely on potentially rough approximations. The algorithm is demonstrated on Markov process and integer autoregressive moving average models applied to real biological datasets of hospital-acquired pathogen incidence, animal health time series and the cumulative number of poison disease cases in mule deer.
Resumo:
The inverse temperature hyperparameter of the hidden Potts model governs the strength of spatial cohesion and therefore has a substantial influence over the resulting model fit. The difficulty arises from the dependence of an intractable normalising constant on the value of the inverse temperature, thus there is no closed form solution for sampling from the distribution directly. We review three computational approaches for addressing this issue, namely pseudolikelihood, path sampling, and the approximate exchange algorithm. We compare the accuracy and scalability of these methods using a simulation study.
Resumo:
When a puzzle game is created, its design parameters must be chosen to allow solvable and interesting challenges to be created for the player. We investigate the use of random sampling as a computationally inexpensive means of automated game analysis, to evaluate the BoxOff family of puzzle games. This analysis reveals useful insights into the game, such as the surprising fact that almost 100% of randomly generated challenges have a solution, but less than 10% will be solved using strictly random play, validating the inventor’s design choices. We show the 1D game to be trivial and the 3D game to be viable.
Resumo:
This paper proposes solutions to three issues pertaining to the estimation of finite mixture models with an unknown number of components: the non-identifiability induced by overfitting the number of components, the mixing limitations of standard Markov Chain Monte Carlo (MCMC) sampling techniques, and the related label switching problem. An overfitting approach is used to estimate the number of components in a finite mixture model via a Zmix algorithm. Zmix provides a bridge between multidimensional samplers and test based estimation methods, whereby priors are chosen to encourage extra groups to have weights approaching zero. MCMC sampling is made possible by the implementation of prior parallel tempering, an extension of parallel tempering. Zmix can accurately estimate the number of components, posterior parameter estimates and allocation probabilities given a sufficiently large sample size. The results will reflect uncertainty in the final model and will report the range of possible candidate models and their respective estimated probabilities from a single run. Label switching is resolved with a computationally light-weight method, Zswitch, developed for overfitted mixtures by exploiting the intuitiveness of allocation-based relabelling algorithms and the precision of label-invariant loss functions. Four simulation studies are included to illustrate Zmix and Zswitch, as well as three case studies from the literature. All methods are available as part of the R package Zmix, which can currently be applied to univariate Gaussian mixture models.
Resumo:
Pseudo-marginal methods such as the grouped independence Metropolis-Hastings (GIMH) and Markov chain within Metropolis (MCWM) algorithms have been introduced in the literature as an approach to perform Bayesian inference in latent variable models. These methods replace intractable likelihood calculations with unbiased estimates within Markov chain Monte Carlo algorithms. The GIMH method has the posterior of interest as its limiting distribution, but suffers from poor mixing if it is too computationally intensive to obtain high-precision likelihood estimates. The MCWM algorithm has better mixing properties, but less theoretical support. In this paper we propose to use Gaussian processes (GP) to accelerate the GIMH method, whilst using a short pilot run of MCWM to train the GP. Our new method, GP-GIMH, is illustrated on simulated data from a stochastic volatility and a gene network model.
Resumo:
With the rapid development of various technologies and applications in smart grid implementation, demand response has attracted growing research interests because of its potentials in enhancing power grid reliability with reduced system operation costs. This paper presents a new demand response model with elastic economic dispatch in a locational marginal pricing market. It models system economic dispatch as a feedback control process, and introduces a flexible and adjustable load cost as a controlled signal to adjust demand response. Compared with the conventional “one time use” static load dispatch model, this dynamic feedback demand response model may adjust the load to a desired level in a finite number of time steps and a proof of convergence is provided. In addition, Monte Carlo simulation and boundary calculation using interval mathematics are applied for describing uncertainty of end-user's response to an independent system operator's expected dispatch. A numerical analysis based on the modified Pennsylvania-Jersey-Maryland power pool five-bus system is introduced for simulation and the results verify the effectiveness of the proposed model. System operators may use the proposed model to obtain insights in demand response processes for their decision-making regarding system load levels and operation conditions.
Resumo:
Elucidating the mechanisms responsible for the patterns of species abundance, diversity, and distribution within and across ecological systems is a fundamental research focus in ecology. Species abundance patterns are shaped in a convoluted way by interplays between inter-/intra-specific interactions, environmental forcing, demographic stochasticity, and dispersal. Comprehensive models and suitable inferential and computational tools for teasing out these different factors are quite limited, even though such tools are critically needed to guide the implementation of management and conservation strategies, the efficacy of which rests on a realistic evaluation of the underlying mechanisms. This is even more so in the prevailing context of concerns over climate change progress and its potential impacts on ecosystems. This thesis utilized the flexible hierarchical Bayesian modelling framework in combination with the computer intensive methods known as Markov chain Monte Carlo, to develop methodologies for identifying and evaluating the factors that control the structure and dynamics of ecological communities. These methodologies were used to analyze data from a range of taxa: macro-moths (Lepidoptera), fish, crustaceans, birds, and rodents. Environmental stochasticity emerged as the most important driver of community dynamics, followed by density dependent regulation; the influence of inter-specific interactions on community-level variances was broadly minor. This thesis contributes to the understanding of the mechanisms underlying the structure and dynamics of ecological communities, by showing directly that environmental fluctuations rather than inter-specific competition dominate the dynamics of several systems. This finding emphasizes the need to better understand how species are affected by the environment and acknowledge species differences in their responses to environmental heterogeneity, if we are to effectively model and predict their dynamics (e.g. for management and conservation purposes). The thesis also proposes a model-based approach to integrating the niche and neutral perspectives on community structure and dynamics, making it possible for the relative importance of each category of factors to be evaluated in light of field data.
Resumo:
Markov random fields (MRF) are popular in image processing applications to describe spatial dependencies between image units. Here, we take a look at the theory and the models of MRFs with an application to improve forest inventory estimates. Typically, autocorrelation between study units is a nuisance in statistical inference, but we take an advantage of the dependencies to smooth noisy measurements by borrowing information from the neighbouring units. We build a stochastic spatial model, which we estimate with a Markov chain Monte Carlo simulation method. The smooth values are validated against another data set increasing our confidence that the estimates are more accurate than the originals.