977 resultados para Marine seagrass
Resumo:
Internationally, marine biodiversity conservation objectives are having an increasing influence on the management of commercial fisheries. While this is largely being implemented through Marine Protected Areas (MPAs) other management measures, such as market based instruments (MBIs), have proved to be effective at managing target species catch in fisheries and reducing environmental impacts in industries such as mining and tourism. Market-based management measures aim to mitigate the impacts of activities by better aligning the incentives their participants face with the objectives of management, changing their behavior as a consequence. In this paper, we review the potential of MBIs as management tools to mitigate undesirable environmental impacts associated with commercial fishing. Where they exist, examples of previous applications are described and the factors that influence their applicability and effectiveness are discussed. Several fishing methods and impacts are considered and suggest that whilst no single approach is most appropriate in all circumstances either replacing or complementing existing management arrangements with MBIs has the potential to improve environmental performance. This has a number of implications. From the environmental perspective they should enable levels of undesirable impacts such as damage to sensitive habitat or the bycatch of protected species of turtles, marine mammals, and seabirds to be reduced. The increased flexibility MBIs allow industry when developing solutions also has the potential to reduce costs to both the industry and managers, improving the cost-effectiveness of regulation as a result. Further, in the increasingly relevant case of MPAs the need for publicly funded compensation, often paid to industry when vessels are excluded from grounds, may also be significantly reduced if improved environmental performance makes it possible for some industry members to continue operating.
Resumo:
The loss and recovery of intertidal seagrass meadows were assessed following the flood related catastrophic loss of seagrass meadows in February 1999 in the Sandy Strait, Queensland. Region wide recovery rates of intertidal meadows following the catastrophic disturbance were assessed by mapping seagrass abundance in the northern Great Sandy Strait region prior to and on 3 occasions after widespread loss of seagrass. Meadow-scale assessments of seagrass loss and recovery focussed on two existing Zostera capricorni monitoring meadows in the region. Mapping surveys showed that approximately 90% of intertidal seagrasses in the northern Great Sandy Strait disappeared after the February 1999 flooding of the Mary River. Full recovery of all seagrass meadows took 3 years. At the two study sites (Urangan and Wanggoolba Creek) the onset of Z. capricorni germination following the loss of seagrass occurred 14 months post-flood at Wanggoolba Creek, and at Urangan it took 20 months for germination to occur. By February 2001 (24 months post-flood) seagrass abundance at Wanggoolba Creek sites was comparable to pre-flood abundance levels and full recovery at Urangan sites was complete in August 2001 (31 months post-flood). Reduced water quality characterised by 2–3 fold increases in turbidity and nutrient concentrations during the 6 months following the flood was followed by a 95% loss of seagrass meadows in the region. Reductions in available light due to increased flood associated turbidity in February 1999 were the likely cause of seagrass loss in the Great Sandy Strait region, southern Queensland. Although seasonal cues influence the germination of Z. capricorni, the temporal variation in the onset of seed germination between sites suggests that germination following seagrass loss may be dependent on other factors (eg. physical and chemical characteristics of sediments and water). Elevated dissolved nitrogen concentrations during 1999 at Wanggoolba Creek suggest that this site received higher loads of sediments and nutrients from flood waters than Urangan. The germination of seeds at Wanggoolba Creek one year prior to Urangan coincides with relatively low suspended sediment concentrations in Wanggoolba Creek waters. The absence of organic rich sediments at Urangan for many months following their removal during the 1999 flood may also have inhibited seed germination. Data from population cohort analyses and population growth rates showed that rhizome weight and rhizome elongation rates increased over time, consistent with rapid growth during increases in temperature and light availability from May to October
Resumo:
This article presents some remarks on models currently used in low speed manoeuvring and dynamic positioning problems. It discusses the relationship between the classical hydrodynamic equations for manoeuvring and seakeeping, and offers insight into the models used for simulation and control system design.
Resumo:
The tropical marine sponge Acanthella cavernosa (Dendy) converts potassium [14C] cyanide to axisonitrile-3 (1); this precursor is also used for the synthesis of axisothiocyanate-3 (2) suggesting that isocyanides are precursors to isothiocyanates in A. cavernosa. Likewise, potassium [14C] thiocyanate is used for the synthesis of axisothiocyanate-3; unexpectedly this precursor also labelled axisonitrile-3. These results demonstrate either an interconversion between cyanide and thiocyanate prior to secondary metabolite formation or that the secondary metabolites can themselves be interconverted. Specimens of the dorid nudibranch Phyllidiellu pustulosa, preadapted to a diet of A. cavernosa, fed on 14C-labelled sponges and were subsequently found to contain the radioactive terpenes (1) and (2). Specimens of P. pustulosa, which had not expressed a dietary preference for A. cavernosa in the field, did not generally feed in aquarium tests with 14C-labelled sponges and, therefore, provided non-radioactive extracts. Since control experiments demonstrated the inability of P. pustulosa to synthesise the metabolites de novo, we therefore conclude that P. pustulosa acquires secondary metabolites by dietary transfer from A. cavernosa.
Resumo:
The current study was undertaken to enumerate Gram-positive bacteria in fresh sub-tropical marine fish and determine the effect of ambient storage (25°C) on the Gram-positive bacterial count. Total and Gram-positive bacteria were enumerated in the muscles, gills and gut of fresh and stored Pseudocaranx dentex, Pagrus auratus and Mugil cephalus on tryptone soya agar (TSA) and TSA with 0.25% phenylethyl alcohol (PEA), respectively. Initial studies indicated that PEA significantly reduced total aerobic bacterial count (TABC) whereas control Gram-positive bacteria were not affected by 0.25% PEA. TABC significantly increased in all fish body parts, whereas Gram-positive aerobic bacterial count (GABC) significantly increased only in the muscles and gills during ambient storage for 15 h. The TABC of the fish species increased from 4.00, 6.13 and 4.58 log cfu g-1, respectively in the muscles, gills, and gut to 6.31, 7.31 and 7.23 log cfu g-1 by the end of storage. GABC increased from 2.00, 3.52 and 2.20 log cfu g-1 to 4.70, 5.85 and 3.36 log cfu g-1. Within each species, TABC were significantly higher in the gills compared to that of muscles and gut; however, no significant differences were found in GABC between muscles and gills. This study demonstrated the potential importance of Gram-positive bacteria in sub-tropical marine fish and their spoilage.
Resumo:
In coastal waters and estuaries, seagrass meadows are often subject to light deprivation over short time scales (days to weeks) in response to increased turbidity from anthropogenic disturbances. Seagrasses may exhibit negative physiological responses to light deprivation and suffer stress, or tolerate such stresses through photo-adaptation of physiological processes allowing more efficient use of low light. Pulse Amplitude Modulated (PAM) fluorometery has been used to rapidly assess changes in photosynthetic responses along in situ gradients in light. In this study, however, light is experimentally manipulated in the field to examine the photosynthesis of Halophila ovalis and Zostera capricorni. We aimed to evaluate the tolerance of these seagrasses to short-term light reductions. The seagrasses were subject to four light treatments, 0, 5, 60, and 90% shading, for a period of 14 days. In both species, as shading increased the photosynthetic variables significantly (P < 0.05) decreased by up to 40% for maximum electron transport rates (ETRmax) and 70% for saturating irradiances (Ek). Photosynthetic efficiencies (a) and effective quantum yields (ΔF/Fm′ ) increased significantly (P < 0.05), in both species, for 90% shaded plants compared with 0% shaded plants. H. ovalis was more sensitive to 90% shading than Z. capricorni, showing greater reductions in ETR max, indicative of a reduced photosynthetic capacity. An increase in Ek, Fm′ and ΔF/Fm′ for H. ovalis and Z. capricorni under 90% shading suggested an increase in photochemical efficiency and a more efficient use of low-photon flux, consistent with photo-acclimation to shading. Similar responses were found along a depth gradient from 0 to10 m, where depth related changes in ETRmax and Ek in H. ovalis implied a strong difference of irradiance history between depths of 0 and 5-10 m. The results suggest that H. ovalis is more vulnerable to light deprivation than Z. capricorni and that H. ovalis, at depths of 5-10 m, would be more vulnerable to light deprivation than intertidal populations. Both species showed a strong degree of photo-adaptation to light manipulation that may enable them to tolerate and adapt to short-term reductions in light. These consistent responses to changes in light suggest that photosynthetic variables can be used to rapidly assess the status of seagrasses when subjected to sudden and prolonged periods of reduced light
Resumo:
This study uses chlorophyll a fluorescence to examine the effect of environmentally relevant (1-4 h) exposures of thermal stress (35-45 [deg]C) on seagrass photosynthetic yield in seven tropical species of seagrasses. Acute response of each tropical seagrass species to thermal stress was characterised, and the capacity of each species to tolerate and recover from thermal stress was assessed. Two fundamental characteristics of heat stress were observed. The first effect was a decrease in photosynthetic yield (Fv / Fm) characterised by reductions in F and Fm'. The dramatic decline in Fv / Fm ratio, due to chronic inhibition of photosynthesis, indicates an intolerance of Halophila ovalis, Zostera capricorni and Syringodium isoetifolium to ecologically relevant exposures of thermal stress and structural alterations to the PhotoSystem II (PSII) reaction centres. The decline in Fm' represents heat-induced photoinhibition related to closure of PSII reaction centres and chloroplast dysfunction. The key finding was that Cymodocea rotundata, Cymodocea serrulata, Halodule uninervis and Thalassia hemprichii were more tolerant to thermal stress than H. ovalis, Z. capricorni and S. isoetifolium. After 3 days of 4 h temperature treatments ranging from 25 to 40 [deg]C, C. rotundata, C. serrulata and H. uninervis demonstrated a wide tolerance to temperature with no detrimental effect on Fv / Fm' qN or qP responses. These three species are restricted to subtropical and tropical waters and their tolerance to seawater temperatures up to 40 [deg]C is likely to be an adaptive response to high temperatures commonly occurring at low tides and peak solar irradiance. The results of temperature experiments suggest that the photosynthetic condition of all seagrass species tested are likely to suffer irreparable effects from short-term or episodic changes in seawater temperatures as high as 40-45 [deg]C. Acute stress responses of seagrasses to elevated seawater temperatures are consistent with observed reductions in above-ground biomass during a recent El Nino event.
Resumo:
Seagrass meadows across north-eastern Australia, survive a range of environmental conditions in coastal bays, reefs, estuarine and deepwater habitats through adaptation of a range of structural, morphological and physiological features. The aim of this study was to investigate the influence of spatial features (habitat type, site and depth) and photon flux on the photosynthetic performance of 11 tropical seagrass species. Pulse amplitude modulated (PAM) fluorometry was used to generate rapid light curves from which measures of maximal electron transport rate (ETRmax), photosynthetic efficiency (?), saturating irradiance (Ek) and effective quantum yield (?F/Fm?) were derived. The amount of light absorbed by leaves (absorption factor) was also determined for each population. In intertidal habitats many seagrass species exhibited typical sun-type responses with a close coupling of both ETRmax and Ek with photon flux. Photosynthetic performance ranged from minima in Thalassodendron ciliatum to maxima in Syringodium isoetifolium. The absence of a coupling between photosynthetic performance and photon flux in subtidal populations was most likely due to highly variable light climates and possible light attenuation, and hence the photo-biology of estuarine and deepwater seagrasses exhibited photosynthetic responses indicative of light limitation. In contrast seagrass species from shallow reef and coastal habitats for the most part exhibited light saturation characteristics. Of all the variables examined ETRmax, Ek and ?F/Fm? were most responsive to changing light climates and provide reliable physiological indicators of real-time photosynthetic performance of tropical seagrasses under different light conditions.
Resumo:
Dugong habitats were considered in the design for the new zoning network for the Great Barrier Reef Marine Park as part of the Representative Areas Program. One of the specific design guidelines developed as part of the biophysical operational principles recommended that 50% of all high priority dugong habitats should be incorporated in the network of no-take areas. The high priority dugong habitat incorporated in no-take protection increased from 1396 to 3476 km2 (or 16.9-42.0% of all identified sites). Although this increase in protection fell short of the recommended 50%, overall the level of protection afforded by the Great Barrier Reef Marine Park Zoning Plan 2003 increased for all the locations identified.
Resumo:
Biomineralization of manganese on titanium condenser material exposed to seawater has been illustrated. Biomineralization occurs when the fouling components, namely, the microbes, are able to oxidize minerals present in water and deposit them as insoluble oxides on biofilm surfaces. Extensive biofilm characterization studies Showed that an alarmingly large number of bacteria in these biofilms are capable of oxidizing manganese and are, thereby, capable of causing biomineralization on the condenser material exposed to seawater. This paper addresses studies on understanding the exact role of the microbes in bringing about oxidation of manganese. The kinetics of manganese oxidation by marine Gram-positive manganese oxidizing bacterium Bacillus spp. that was isolated front the titanium surface was studied in detail. Manganese oxidation in the presence of Bacillus cells, by cell free extract (CFE) and heat-treated cell free extract was also studied. The study confirmed that bacteria mediate manganese oxidation and lead to the formation of biogenic oxides of MnO2 eventually leading to biomineralization on titanium surface exposed to seawater.
Resumo:
The distribution and nutritional profiles of sub-tidal seagrasses from the Torres Strait were surveyed and mapped across an area of 31,000 km2. Benthic sediment composition, water depth, seagrass species type and nutrients were sampled at 168 points selected in a stratified representative pattern. Eleven species of seagrass were present at 56 (33.3%) of the sample points. Halophila spinulosa, Halophila ovalis, Cymodocea serrulata and Syringodium isoetifolium were the most common species and these were nutrient profiled. Sub-tidal seagrass distribution (and associated seagrass nutrient concentrations) was generally confined to northern-central and south-western regions of the survey area (
Resumo:
Several species of marine mammals are at risk of extinction from being captured as bycatch in commercial fisheries. Various approaches have been developed and implemented to address this bycatch problem, including devices and gear changes, time and area closures and fisheries moratoria. Most of these solutions are difficult to implement effectively, especially for artisanal fisheries in developing countries and remote regions. Re-zoning of the Great Barrier Reef World Heritage Area (GBRWHA) in 2004 closed 33% of the region to extractive activities, including commercial fishing. However, the impact of re-zoning and the associated industry restructuring on a threatened marine mammal, the dugong (Dugong dugon), is difficult to quantify. Accurate information on dugong bycatch in commercial nets is unavailable because of the large geographic extent of the GBRWHA, the remoteness of the region adjacent to the Cape York Peninsula where most dugongs occur and the artisanal nature of the fishery. In the face of this uncertainty, a spatial risk-assessment approach was used to evaluate the re-zoning and associated industry restructuring for their ability to reduce the risk of dugong bycatch from commercial fisheries netting. The new zoning arrangements appreciably reduced the risk of dugong bycatch by reducing the total area where commercial netting is permitted. Netting is currently not permitted in 67% of dugong habitats of high conservation value, a 56% improvement over the former arrangements. Re-zoning and industry restructuring also contributed to a 22% decline in the spatial extent of conducted netting. Spatial risk assessment approaches that evaluate the risk of mobile marine mammals from bycatch are applicable to other situations where there is limited information on the location and intensity of bycatch, including remote regions and developing countries where resources are limited.
Resumo:
This study identified Gram-positive bacteria in three sub-tropical marine fish species: Pseudocaranx dentex (silver trevally), Pagrus auratus (snapper) and Mugil cephalus (sea mullet). It further elucidated the role played by fish habitat, fish body part and ambient storage on the composition of the Gram-positive bacteria. A total of 266 isolates of Gram-positive bacteria were identified by conventional biochemical methods, VITEK, PCR using genus- and species-specific primers and/or 16S rRNA gene sequencing. The isolates were found to fall into 13 genera and 30 species. In fresh fish, Staphylococcus epidermidis and Micrococcus luteus were the most frequent isolates. After ambient storage, S. epidermidis, S. xylosus and Bacillus megaterium were no longer present whereas S. warned, B. sphaericus, Brevibacillus borstelensis, Enterococcus faecium and Streptococcus uberis increased in frequency. Micrococcus luteus and S. warned were the most prevalent isolates from P. dentex, while E. faecium and Strep. uberis were the most frequent isolates from P. auratus and M. cephalus. With respect to different parts of the fish body. E. faecium, Strep. uberis and B. sphaericus were the most frequent isolates from the muscles, E. faecium, Strep. uberis from the gills and M. luteus from the gut. This study showed a diversity of Gram-positive bacteria in sub-tropical marine fish; however, their abundance was affected by fish habitat, fish body part and ambient storage.
Resumo:
Coastal seagrass habitats in tropical and subtropical regions support aggregations of resident green turtles (Chelonia mydas) from several genetically distinct breeding populations. Migration of individuals to their respective dispersed breeding sites provides a complex pattern of migratory connectivity among nesting and feeding habitats of this species. An understanding of this pattern is important in regions where the persistence of populations is under threat from anthropogenic impacts. The present study uses mitochondrial DNA and mixed-stock analyses to assess the connectivity among seven feeding grounds across the north Australian coast and adjacent areas and 17 genetically distinct breeding populations from the Indo-Pacific region. It was hypothesised that large and geographically proximate breeding populations would dominate at nearby feeding grounds. As expected, each sampled feeding area appears to support multiple breeding populations, with two aggregations dominated by a local breeding population. Geographic distance between breeding and feeding habitat strongly influenced whether a breeding population contributed to a feeding ground (wi = 0.654); however, neither distance nor size of a breeding population was a good predictor of the extent of their contribution. The differential proportional contributions suggest the impact of anthropogenic mortality at feeding grounds should be assessed on a case-by-case basis.
Resumo:
To enhance the sustainability of marine finfish aquaculture in the Asia-Pacific (AP) region by improving hatchery production technology and facilitating the uptake of compounded feeds for grow-out.