212 resultados para Malicious mischief.
Resumo:
We have recently proposed the framework of independent blind source separation as an advantageous approach to steganography. Amongst the several characteristics noted was a sensitivity to message reconstruction due to small perturbations in the sources. This characteristic is not common in most other approaches to steganography. In this paper we discuss how this sensitivity relates the joint diagonalisation inside the independent component approach, and reliance on exact knowledge of secret information, and how it can be used as an additional and inherent security mechanism against malicious attack to discovery of the hidden messages. The paper therefore provides an enhanced mechanism that can be used for e-document forensic analysis and can be applied to different dimensionality digital data media. In this paper we use a low dimensional example of biomedical time series as might occur in the electronic patient health record, where protection of the private patient information is paramount.
Resumo:
This paper introduces a joint load balancing and hotspot mitigation protocol for mobile ad-hoc network (MANET) termed by us as 'load_energy balance + hotspot mitigation protocol (LEB+HM)'. We argue that although ad-hoc wireless networks have limited network resources - bandwidth and power, prone to frequent link/node failures and have high security risk; existing ad hoc routing protocols do not put emphasis on maintaining robust link/node, efficient use of network resources and on maintaining the security of the network. Typical route selection metrics used by existing ad hoc routing protocols are shortest hop, shortest delay, and loop avoidance. These routing philosophy have the tendency to cause traffic concentration on certain regions or nodes, leading to heavy contention, congestion and resource exhaustion which in turn may result in increased end-to-end delay, packet loss and faster battery power depletion, degrading the overall performance of the network. Also in most existing on-demand ad hoc routing protocols intermediate nodes are allowed to send route reply RREP to source in response to a route request RREQ. In such situation a malicious node can send a false optimal route to the source so that data packets sent will be directed to or through it, and tamper with them as wish. It is therefore desirable to adopt routing schemes which can dynamically disperse traffic load, able to detect and remove any possible bottlenecks and provide some form of security to the network. In this paper we propose a combine adaptive load_energy balancing and hotspot mitigation scheme that aims at evenly distributing network traffic load and energy, mitigate against any possible occurrence of hotspot and provide some form of security to the network. This combine approach is expected to yield high reliability, availability and robustness, that best suits any dynamic and scalable ad hoc network environment. Dynamic source routing (DSR) was use as our underlying protocol for the implementation of our algorithm. Simulation comparison of our protocol to that of original DSR shows that our protocol has reduced node/link failure, even distribution of battery energy, and better network service efficiency.
Resumo:
There are several unresolved problems in forensic authorship profiling, including a lack of research focusing on the types of texts that are typically analysed in forensic linguistics (e.g. threatening letters, ransom demands) and a general disregard for the effect of register variation when testing linguistic variables for use in profiling. The aim of this dissertation is therefore to make a first step towards filling these gaps by testing whether established patterns of sociolinguistic variation appear in malicious forensic texts that are controlled for register. This dissertation begins with a literature review that highlights a series of correlations between language use and various social factors, including gender, age, level of education and social class. This dissertation then presents the primary data set used in this study, which consists of a corpus of 287 fabricated malicious texts from 3 different registers produced by 96 authors stratified across the 4 social factors listed above. Since this data set is fabricated, its validity was also tested through a comparison with another corpus consisting of 104 naturally occurring malicious texts, which showed that no important differences exist between the language of the fabricated malicious texts and the authentic malicious texts. The dissertation then reports the findings of the analysis of the corpus of fabricated malicious texts, which shows that the major patterns of sociolinguistic variation identified in previous research are valid for forensic malicious texts and that controlling register variation greatly improves the performance of profiling. In addition, it is shown that through regression analysis it is possible to use these patterns of linguistic variation to profile the demographic background of authors across the four social factors with an average accuracy of 70%. Overall, the present study therefore makes a first step towards developing a principled model of forensic authorship profiling.
Resumo:
Examines the Court of Appeal judgment in Tesla Motors Ltd v BBC on whether the claim that a review of a vehicle on the BBC "Top Gear" programme constituted malicious falsehood should be struck out under CPR 3.4(2) on the ground there was insufficient evidence to show that any loss in revenue suffered by the manufacturer was attributable to the review. Considers the implications of the decision for commercial claimants seeking to establish that defamation caused them "serious harm", which, pursuant to the Defamation Act 2013 s.1(2), requires evidence of actual or likely serious financial loss.
Resumo:
Intrusion detection is a critical component of security information systems. The intrusion detection process attempts to detect malicious attacks by examining various data collected during processes on the protected system. This paper examines the anomaly-based intrusion detection based on sequences of system calls. The point is to construct a model that describes normal or acceptable system activity using the classification trees approach. The created database is utilized as a basis for distinguishing the intrusive activity from the legal one using string metric algorithms. The major results of the implemented simulation experiments are presented and discussed as well.
Resumo:
The popularity of online social media platforms provides an unprecedented opportunity to study real-world complex networks of interactions. However, releasing this data to researchers and the public comes at the cost of potentially exposing private and sensitive user information. It has been shown that a naive anonymization of a network by removing the identity of the nodes is not sufficient to preserve users’ privacy. In order to deal with malicious attacks, k -anonymity solutions have been proposed to partially obfuscate topological information that can be used to infer nodes’ identity. In this paper, we study the problem of ensuring k anonymity in time-varying graphs, i.e., graphs with a structure that changes over time, and multi-layer graphs, i.e., graphs with multiple types of links. More specifically, we examine the case in which the attacker has access to the degree of the nodes. The goal is to generate a new graph where, given the degree of a node in each (temporal) layer of the graph, such a node remains indistinguishable from other k-1 nodes in the graph. In order to achieve this, we find the optimal partitioning of the graph nodes such that the cost of anonymizing the degree information within each group is minimum. We show that this reduces to a special case of a Generalized Assignment Problem, and we propose a simple yet effective algorithm to solve it. Finally, we introduce an iterated linear programming approach to enforce the realizability of the anonymized degree sequences. The efficacy of the method is assessed through an extensive set of experiments on synthetic and real-world graphs.
Resumo:
With the advent of GPS enabled smartphones, an increasing number of users is actively sharing their location through a variety of applications and services. Along with the continuing growth of Location-Based Social Networks (LBSNs), security experts have increasingly warned the public of the dangers of exposing sensitive information such as personal location data. Most importantly, in addition to the geographical coordinates of the user’s location, LBSNs allow easy access to an additional set of characteristics of that location, such as the venue type or popularity. In this paper, we investigate the role of location semantics in the identification of LBSN users. We simulate a scenario in which the attacker’s goal is to reveal the identity of a set of LBSN users by observing their check-in activity. We then propose to answer the following question: what are the types of venues that a malicious user has to monitor to maximize the probability of success? Conversely, when should a user decide whether to make his/her check-in to a location public or not? We perform our study on more than 1 million check-ins distributed over 17 urban regions of the United States. Our analysis shows that different types of venues display different discriminative power in terms of user identity, with most of the venues in the “Residence” category providing the highest re-identification success across the urban regions. Interestingly, we also find that users with a high entropy of their check-ins distribution are not necessarily the hardest to identify, suggesting that it is the collective behaviour of the users’ population that determines the complexity of the identification task, rather than the individual behaviour.
Resumo:
The Internet has become a universal communication network tool. It has evolved from a platform that supports best-effort traffic to one that now carries different traffic types including those involving continuous media with quality of service (QoS) requirements. As more services are delivered over the Internet, we face increasing risk to their availability given that malicious attacks on those Internet services continue to increase. Several networks have witnessed denial of service (DoS) and distributed denial of service (DDoS) attacks over the past few years which have disrupted QoS of network services, thereby violating the Service Level Agreement (SLA) between the client and the Internet Service Provider (ISP). Hence DoS or DDoS attacks are major threats to network QoS. In this paper we survey techniques and solutions that have been deployed to thwart DoS and DDoS attacks and we evaluate them in terms of their impact on network QoS for Internet services. We also present vulnerabilities that can be exploited for QoS protocols and also affect QoS if exploited. In addition, we also highlight challenges that still need to be addressed to achieve end-to-end QoS with recently proposed DoS/DDoS solutions. © 2010 John Wiley & Sons, Ltd.
Resumo:
Today's wireless networks rely mostly on infrastructural support for their operation. With the concept of ubiquitous computing growing more popular, research on infrastructureless networks have been rapidly growing. However, such types of networks face serious security challenges when deployed. This dissertation focuses on designing a secure routing solution and trust modeling for these infrastructureless networks. ^ The dissertation presents a trusted routing protocol that is capable of finding a secure end-to-end route in the presence of malicious nodes acting either independently or in collusion, The solution protects the network from active internal attacks, known to be the most severe types of attacks in an ad hoc application. Route discovery is based on trust levels of the nodes, which need to be dynamically computed to reflect the malicious behavior in the network. As such, we have developed a trust computational model in conjunction with the secure routing protocol that analyzes the different malicious behavior and quantifies them in the model itself. Our work is the first step towards protecting an ad hoc network from colluding internal attack. To demonstrate the feasibility of the approach, extensive simulation has been carried out to evaluate the protocol efficiency and scalability with both network size and mobility. ^ This research has laid the foundation for developing a variety of techniques that will permit people to justifiably trust the use of ad hoc networks to perform critical functions, as well as to process sensitive information without depending on any infrastructural support and hence will enhance the use of ad hoc applications in both military and civilian domains. ^
Resumo:
Wireless sensor networks are emerging as effective tools in the gathering and dissemination of data. They can be applied in many fields including health, environmental monitoring, home automation and the military. Like all other computing systems it is necessary to include security features, so that security sensitive data traversing the network is protected. However, traditional security techniques cannot be applied to wireless sensor networks. This is due to the constraints of battery power, memory, and the computational capacities of the miniature wireless sensor nodes. Therefore, to address this need, it becomes necessary to develop new lightweight security protocols. This dissertation focuses on designing a suite of lightweight trust-based security mechanisms and a cooperation enforcement protocol for wireless sensor networks. This dissertation presents a trust-based cluster head election mechanism used to elect new cluster heads. This solution prevents a major security breach against the routing protocol, namely, the election of malicious or compromised cluster heads. This dissertation also describes a location-aware, trust-based, compromise node detection, and isolation mechanism. Both of these mechanisms rely on the ability of a node to monitor its neighbors. Using neighbor monitoring techniques, the nodes are able to determine their neighbors’ reputation and trust level through probabilistic modeling. The mechanisms were designed to mitigate internal attacks within wireless sensor networks. The feasibility of the approach is demonstrated through extensive simulations. The dissertation also addresses non-cooperation problems in multi-user wireless sensor networks. A scalable lightweight enforcement algorithm using evolutionary game theory is also designed. The effectiveness of this cooperation enforcement algorithm is validated through mathematical analysis and simulation. This research has advanced the knowledge of wireless sensor network security and cooperation by developing new techniques based on mathematical models. By doing this, we have enabled others to build on our work towards the creation of highly trusted wireless sensor networks. This would facilitate its full utilization in many fields ranging from civilian to military applications.
Resumo:
This research involves the design, development, and theoretical demonstration of models resulting in integrated misbehavior resolution protocols for ad hoc networked devices. Game theory was used to analyze strategic interaction among independent devices with conflicting interests. Packet forwarding at the routing layer of autonomous ad hoc networks was investigated. Unlike existing reputation based or payment schemes, this model is based on repeated interactions. To enforce cooperation, a community enforcement mechanism was used, whereby selfish nodes that drop packets were punished not only by the victim, but also by all nodes in the network. Then, a stochastic packet forwarding game strategy was introduced. Our solution relaxed the uniform traffic demand that was pervasive in other works. To address the concerns of imperfect private monitoring in resource aware ad hoc networks, a belief-free equilibrium scheme was developed that reduces the impact of noise in cooperation. This scheme also eliminated the need to infer the private history of other nodes. Moreover, it simplified the computation of an optimal strategy. The belief-free approach reduced the node overhead and was easily tractable. Hence it made the system operation feasible. Motivated by the versatile nature of evolutionary game theory, the assumption of a rational node is relaxed, leading to the development of a framework for mitigating routing selfishness and misbehavior in Multi hop networks. This is accomplished by setting nodes to play a fixed strategy rather than independently choosing a rational strategy. A range of simulations was carried out that showed improved cooperation between selfish nodes when compared to older results. Cooperation among ad hoc nodes can also protect a network from malicious attacks. In the absence of a central trusted entity, many security mechanisms and privacy protections require cooperation among ad hoc nodes to protect a network from malicious attacks. Therefore, using game theory and evolutionary game theory, a mathematical framework has been developed that explores trust mechanisms to achieve security in the network. This framework is one of the first steps towards the synthesis of an integrated solution that demonstrates that security solely depends on the initial trust level that nodes have for each other.^
Resumo:
In their discussion entitled - “Unfair” Restaurant Reviews: To Sue Or Not To Sue - by John Schroeder and Bruce Lazarus, Assistant Professors, Department of Restaurant, Hotel and Institutional Management at Purdue University, the authors initially state: “Both advantages and disadvantages exist on bringing lawsuits against restaurant critics who write “unfair” reviews. The authors, both of whom have experience with restaurant criticism, offer practical advice on what realistically can be done by the restaurateur outside of the courtroom to combat unfair criticism.” Well, this is going to be a sticky wicket no matter how you try to defend it, reviews being what they are; very subjective pieces of opinionated journalism, especially in the food industry. And, of course, unless you can prove malicious intent there really is no a basis for a libel suit. So, a restaurateur is at the mercy of written opinion and the press. “Libel is the written or published form of slander which is the statement of false remarks that may damage the reputation of others. It also includes any false and malicious publication which may damage a person's business, trade, or employment,” is the defined form of the law provided by the authors. Anecdotally, Schroeder and Lazarus offer a few of the more scathing pieces reviewers have written about particular eating establishments. And, yes, they can be a bit comical, unless you are the owner of an establishment that appears in the crosshairs of such a reviewer. A bad review can kneecap even a popular eatery. “Because of the large readership of restaurant reviews in the publication (consumer dining out habits indicate that nearly 50 percent of consumers read a review before visiting a new restaurant) your business begins a very dangerous downward tailspin,” the authors reveal, with attribution. “Many restaurant operators contend that a bad review can cost them an immediate trade loss of upward of 50 percent,” Schroeder and Lazarus warn. “The United States Supreme Court has ruled that a restaurant owner can collect damages only if he proves that the statement or statements were made with “actual malice,” even if the statements were untrue,” the authors say by way of citation. And that last portion of the statement cannot be over-emphasized. The first amendment to the U.S. Constitution does wield a heavy hammer, indeed, and it should. So, what recourse does a restaurateur have? The authors cautiously give a guarded thumbs-up to a lawsuit, but you better be prepared to prove a misstatement of fact, as opposed to the distinguishable press protected right of opinion. For the restaurateur the pitfalls are many, the rewards few and far between, Schroeder and Lazarus will have you know. “…after weighing the advantages and disadvantages of a lawsuit against a critic...the disadvantages are overwhelming,” the authors say. “Chicago restaurant critic James Ward said that someone dumped a load of manure on his yard accompanied by a note that read - Stop writing that s--t! - after he wrote a review of a local restaurant.” Such is a novel if not legally measurable tack against an un-mutual review.
Resumo:
With hundreds of millions of users reporting locations and embracing mobile technologies, Location Based Services (LBSs) are raising new challenges. In this dissertation, we address three emerging problems in location services, where geolocation data plays a central role. First, to handle the unprecedented growth of generated geolocation data, existing location services rely on geospatial database systems. However, their inability to leverage combined geographical and textual information in analytical queries (e.g. spatial similarity joins) remains an open problem. To address this, we introduce SpsJoin, a framework for computing spatial set-similarity joins. SpsJoin handles combined similarity queries that involve textual and spatial constraints simultaneously. LBSs use this system to tackle different types of problems, such as deduplication, geolocation enhancement and record linkage. We define the spatial set-similarity join problem in a general case and propose an algorithm for its efficient computation. Our solution utilizes parallel computing with MapReduce to handle scalability issues in large geospatial databases. Second, applications that use geolocation data are seldom concerned with ensuring the privacy of participating users. To motivate participation and address privacy concerns, we propose iSafe, a privacy preserving algorithm for computing safety snapshots of co-located mobile devices as well as geosocial network users. iSafe combines geolocation data extracted from crime datasets and geosocial networks such as Yelp. In order to enhance iSafe's ability to compute safety recommendations, even when crime information is incomplete or sparse, we need to identify relationships between Yelp venues and crime indices at their locations. To achieve this, we use SpsJoin on two datasets (Yelp venues and geolocated businesses) to find venues that have not been reviewed and to further compute the crime indices of their locations. Our results show a statistically significant dependence between location crime indices and Yelp features. Third, review centered LBSs (e.g., Yelp) are increasingly becoming targets of malicious campaigns that aim to bias the public image of represented businesses. Although Yelp actively attempts to detect and filter fraudulent reviews, our experiments showed that Yelp is still vulnerable. Fraudulent LBS information also impacts the ability of iSafe to provide correct safety values. We take steps toward addressing this problem by proposing SpiDeR, an algorithm that takes advantage of the richness of information available in Yelp to detect abnormal review patterns. We propose a fake venue detection solution that applies SpsJoin on Yelp and U.S. housing datasets. We validate the proposed solutions using ground truth data extracted by our experiments and reviews filtered by Yelp.
Resumo:
In recent years, there has been an enormous growth of location-aware devices, such as GPS embedded cell phones, mobile sensors and radio-frequency identification tags. The age of combining sensing, processing and communication in one device, gives rise to a vast number of applications leading to endless possibilities and a realization of mobile Wireless Sensor Network (mWSN) applications. As computing, sensing and communication become more ubiquitous, trajectory privacy becomes a critical piece of information and an important factor for commercial success. While on the move, sensor nodes continuously transmit data streams of sensed values and spatiotemporal information, known as ``trajectory information". If adversaries can intercept this information, they can monitor the trajectory path and capture the location of the source node. ^ This research stems from the recognition that the wide applicability of mWSNs will remain elusive unless a trajectory privacy preservation mechanism is developed. The outcome seeks to lay a firm foundation in the field of trajectory privacy preservation in mWSNs against external and internal trajectory privacy attacks. First, to prevent external attacks, we particularly investigated a context-based trajectory privacy-aware routing protocol to prevent the eavesdropping attack. Traditional shortest-path oriented routing algorithms give adversaries the possibility to locate the target node in a certain area. We designed the novel privacy-aware routing phase and utilized the trajectory dissimilarity between mobile nodes to mislead adversaries about the location where the message started its journey. Second, to detect internal attacks, we developed a software-based attestation solution to detect compromised nodes. We created the dynamic attestation node chain among neighboring nodes to examine the memory checksum of suspicious nodes. The computation time for memory traversal had been improved compared to the previous work. Finally, we revisited the trust issue in trajectory privacy preservation mechanism designs. We used Bayesian game theory to model and analyze cooperative, selfish and malicious nodes' behaviors in trajectory privacy preservation activities.^
Resumo:
Wireless sensor networks are emerging as effective tools in the gathering and dissemination of data. They can be applied in many fields including health, environmental monitoring, home automation and the military. Like all other computing systems it is necessary to include security features, so that security sensitive data traversing the network is protected. However, traditional security techniques cannot be applied to wireless sensor networks. This is due to the constraints of battery power, memory, and the computational capacities of the miniature wireless sensor nodes. Therefore, to address this need, it becomes necessary to develop new lightweight security protocols. This dissertation focuses on designing a suite of lightweight trust-based security mechanisms and a cooperation enforcement protocol for wireless sensor networks. This dissertation presents a trust-based cluster head election mechanism used to elect new cluster heads. This solution prevents a major security breach against the routing protocol, namely, the election of malicious or compromised cluster heads. This dissertation also describes a location-aware, trust-based, compromise node detection, and isolation mechanism. Both of these mechanisms rely on the ability of a node to monitor its neighbors. Using neighbor monitoring techniques, the nodes are able to determine their neighbors’ reputation and trust level through probabilistic modeling. The mechanisms were designed to mitigate internal attacks within wireless sensor networks. The feasibility of the approach is demonstrated through extensive simulations. The dissertation also addresses non-cooperation problems in multi-user wireless sensor networks. A scalable lightweight enforcement algorithm using evolutionary game theory is also designed. The effectiveness of this cooperation enforcement algorithm is validated through mathematical analysis and simulation. This research has advanced the knowledge of wireless sensor network security and cooperation by developing new techniques based on mathematical models. By doing this, we have enabled others to build on our work towards the creation of highly trusted wireless sensor networks. This would facilitate its full utilization in many fields ranging from civilian to military applications.