669 resultados para Magnetism.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several doped 6H hexagonal ruthenates, having the general formula Ba3MRu2O9, have been studied over a significant period of time to understand the unusual magnetism of ruthenium metal. However, among them, the M = Fe compound appears different since it is observed that unlike others, the 3d Fe ions and 4d Ru ions can easily exchange their crystallographic positions, and as a result many possible magnetic interactions become realizable. The present study involving several experimental methods on this compound establishes that the magnetic structure of Ba3FeRu2O9 is indeed very different from all other 6H ruthenates. Local structural study reveals that the possible Fe/Ru site disorder further extends to create local chemical inhomogeneity, affecting the high-temperature magnetism of this material. There is a gradual decrease of Fe-57 Mossbauer spectral intensity with decreasing temperature (below 100 K), which reveals that there is a large spread in the magnetic ordering temperatures, corresponding to many spatially inhomogeneous regions. However, finally at about 25 K, the whole compound is found to take up a global glasslike magnetic ordering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Powder-neutron diffraction study has been carried out at 300 and 10 K in La0.85Pb0.15Mn1-xTixO3 (0 less than or equal to x less than or equal to 0.15). The samples crystallize in the rhombohedral phase. The magnetic moment reduces nonlinearly with increase in Ti and correlates well with the reported behavior of T-C. The change in the moment and T-C could not be related to change in the one electron bandwidth, W. The reduction is attributed to the effect of dilution and thereby reducing the double exchange ferromagnetic interaction. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ordered double perovskite oxides of the general formula A2BB′O6 have been known for several decades to have interesting electronic and magnetic properties. However, a recent report of a spectacular negative magnetoresistance effect in a specific member of this family, namely Sr2FeMoO6, has brought this class of compounds under intense scrutiny. It is now believed that the origin of the magnetism in this class of compounds is based on a novel kinetically-driven mechanism. This new mechanism is also likely to be responsible for the unusually high temperature ferromagnetism in several other systems, such as dilute magnetic semiconductors, as well as in various half-metallic ferromagnetic systems, such as Heussler alloys.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the fascinating fields of study in magnetism in recent years has been the study of quantum phenomena in nanosystems. While semiconductor structures have provided paradigms of nanosystems from the stand point of electronic phenomena the synthesis of high nuclearity transition metal complexes have provided examples of nano magnets. The range and diversity of the properties exhibited by these systems rivals its electronic counterparts. Qualitative understanding of these phenomena requires only a knowledge of basic physics, but quantitative study throws up many challenges that are similar to those encountered in the study of correlated electronic systems. In this article, a brief overview of the current trends in this area arc highlighted and some of the efforts of our group in developing a quantitative understanding of this field are outlined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a magnetic study of the insulating perovskite LaMn1-xTixO3+delta (0

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the magnetic properties of polycrystalline Dy1−xSrxMnO3 (0.1 ≤ x ≤ 0.4) with an orthorhombic (o) crystal structure. The parent compound, o-DyMnO3, undergoes an incommensurate antiferromagnetic ordering of the Mn spins at 39 K, followed by a spiral order at 18 K. A further antiferromagnetic transition at 5 K marks an ordering of the Dy-sublattice. Doping of divalent Sr ions results in diverse magnetization phenomena. The zero-field cooled (ZFC) and field cooled (FC) magnetization curves display the presence of strongly interacting magnetic sublattices. For x = 0.1 and 0.2, a bifurcation between the ZFC and FC magnetization sets in at around 30 and 32 K, respectively. The ZFC magnetization peaks at about 5 K, indicating antiferromagnetic Dy-couplings similar to the case of o-DyMnO3. For x = 0.3, clear signatures of ferrimagnetism and strong anisotropy are found, including negative magnetization. The compound with x = 0.4 behaves as a spin glass, similar to Dy0.5Sr0.5MnO3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Griffiths phase-like features and the spin-phonon coupling effects observed in Tb(2)NiMnO(6) are reported. The double perovskite compound crystallizes in monoclinic P2(1)/n space group and exhibits a magnetic phase transition at T(c) similar to 111 K as an abrupt change in magnetization. A negative deviation from ideal Curie-Weiss law exhibited by 1/chi(T) curves and less-than-unity susceptibility exponents from the power-law analysis of inverse susceptibility are reminiscent of Griffiths phase-like features. Arrott plots derived from magnetization isotherms support the inhomogeneous nature of magnetism in this material. The observed effects originate from antiferromagnetic interactions that arise from inherent disorder in the system. Raman scattering experiments display no magnetic-order-induced phonon renormalization below Tc in Tb(2)NiMnO(6), which is different from the results observed in other double perovskites and is correlated to the smaller size of the rare earth. The temperature evolution of full-width-at-half-maximum for the stretching mode at 645 cm(-1) presents an anomaly that coincides with the magnetic transition temperature and signals a close connection between magnetism and lattice in this material. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3671674]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The critical behaviour has been investigated in single crystalline Nd0.6Pb0.4MnO3 near the paramagnetic to ferromagnetic transition temperature (TC) by static magnetic measurements. The values of TC and the critical exponents β, γ and δ are estimated by analysing the data in the critical region. The exponent values are very close to those expected for 3D Heisenberg ferromagnets with short-range interactions. Specific heat measurements show a broad cusp at TC (i.e., exponent α<0) being consistent with Heisenberg-like behaviour.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gadolinium iron garnet was milled in a high energy ball mill to study its magnetic properties in the nanocrystalline regime. XRD reveals the decomposition of the garnet phase into Gd-orthoferrite and Gd2O3 on milling. The variation of saturation magnetization and coercivity with milling is attributed to a possible shift in the compensation temperature on grain size reduction and an increase in the orthoferrite content. The Mössbauer spectrum at 16 K is characteristic of the magnetically ordered state corresponding to GdIG, GdFeO3 and α-Fe2O3 whereas at room temperature it is a superparamagnetic doublet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The metal organic frameworks (MOFs) have evolved to be an important family and a corner stone for research in the area of inorganic chemistry. The progress made since 2000 has attracted researchers from other disciplines to actively engage themselves in this area. This cooperative synergy of different scientific believes have provided important edge and spread to the chemistry of metal-organic frameworks. The ease of synthesis coupled with the observation of properties in the areas of catalysis, sorption, separation, luminescence, bioactivity, magnetism, etc., are a proof of this synergism. In this article, we present the recent developments in this area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are very few magnetic members among the 4d and 5d transition metal oxides. In the present work, we examine the recent observation of a high Neel temperature T-N in the 4d oxides SrTcO3 and CaTcO3. Considering a multiband Hubbard model, we find that T-N is larger in the limit of a large bandwidth and vanishingly small intra-atomic exchange interaction strength, contrary to our conventional understanding of magnetism. This is traced to specific aspects of the d(3) configuration at the transition metal site and the study reveals additional examples with high T-N.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Temperature dependent x-ray diffraction measurements have been performed to understand the implications of magnetic phase coexistence on crystallographic structure in a half-doped manganite Pr0.5Sr0.5MnO3. The compound shows a structural phase transition from high-temperature tetragonal-I4/mcm to low-temperature orthorhombic-Fmmm symmetry around the ferromagnetic to antiferro-magnetic transition. Rietveld analysis shows the coexistence of these two structures emerges at high temperature within the ferromagnetic state, and persists down to lowest temperature. Below around 40 K, however, this structural evolution stops, and a significant fraction (similar to 22%) of untransformed high-temperature phase remains. This agrees with earlier magnetization study, thus establishing its magneto-structural coupling. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reentrant low temperature phase of the perovskite manganite LaMnO3+delta (delta=0.22) has been investigated with ac susceptibility and dc magnetization studies. A critical examination of the memory effects in ac susceptibility leads us to the conclusion that the slow dynamics in the system is a consequence of collective relaxation processes resulting from interactions between ferromagnetic clusters, whose presence was indicated in earlier studies. Here, we postulate that the collective behavior is due to the existence of long-range (dipolar) interactions between the large ferromagnetic `superspins'. This is also confirmed by an abnormally large microscopic spin-flip time (similar to 10(-9) s) compared to a canonical spin glass. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CoFe2O4 nanoparticles were prepared by solution combustion method. The nanoparticle are characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy and scanning electron microscopy (SEM). PXRD reveals single phase, cubic spinel structure with Fd (3) over barm (227) space group. SEM micrograph shows the particles are agglomerated and porous in nature. Electron paramagnetic resonance spectrum exhibits a broad resonance signal g=2.150 and is attributed to super exchange between Fe3+ and Co2+. Magnetization values of CoFe2O4 nanoparticle are lower when compared to the literature values of bulk samples. This can be attributed to the surface spin canting due to large surface-to-volume ratio for a nanoscale system. The variation of dielectric constant, dielectric loss, loss tangent and AC conductivity of as-synthesized nano CoFe2O4 particles at room temperature as a function of frequency has been studied. The magnetic and dielectric properties of the samples show that they are suitable for electronic and biomedical applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water-dispersible, photocatalytic Fe3O4@TiO2 core shell magnetic nanoparticles have been prepared by anchoring cyclodextrin cavities to the TiO2 shell, and their ability to capture and photocatalytically destroy endocrine-disrupting chemicals, bisphenol A and dibutyl phthalate, present in water, has been demonstrated. The functionalized nanoparticles can be magnetically separated from the dispersion after photocatalysis and hence reused. Each component of the cyclodextrin-functionalized Fe3O4@TiO2 core shell nanoparticle has a crucial role in its functioning. The tethered cyclodextrins are responsible for the aqueous dispersibility of the nanoparticles and their hydrophobic cavities for the capture of the organic pollutants that may be present in water samples. The amorphous TiO2 shell is the photocatalyst for the degradation and mineralization of the organics, bisphenol A and dibutyl phthalate, under UV illumination, and the magnetism associated with the 9 nm crystalline Fe3O4 core allows for the magnetic separation from the dispersion once photocatalytic degradation is complete. An attractive feature of these ``capture and destroy'' nanomaterials is that they may be completely removed from the dispersion and reused with little or no loss of catalytic activity.