916 resultados para Macrophages uptake
Resumo:
The fate of infected macrophages is a critical aspect of immunity to mycobacteria. By depriving the pathogen of its intracellular niche, apoptotic death of the infected macrophage has been shown to be an important mechanism to control bacterial growth. Here, we show that IL-17 inhibits apoptosis of Mycobacterium bovis BCG- or Mycobacterium tuberculosis-infected macrophages thus hampering their ability to control bacterial growth. Mechanistically, we show that IL-17 inhibits p53, and impacts on the intrinsic apoptotic pathway, by increasing the Bcl2 and decreasing Bax expression, decreasing cytochrome c release from the mitochondria, and inhibiting caspase-3 activation. The same effect of IL-17 was observed in infected macrophages upon blockade of p53 nuclear translocation. These results reveal a previously unappreciated role for the IL-17/p53 axis in the regulation of mycobacteria-induced apoptosis and can have important implications in a broad spectrum of diseases where apoptosis of the infected cell is an important host defense mechanism.
Resumo:
Tese de Doutoramento em Biologia Molecular e Ambiental (área de especialização em Biologia Celular e Saúde).
Resumo:
Tese de Doutoramento em Biologia Molecular e Ambiental (área de especialização em Biologia Celular e Saúde).
Resumo:
Accepted Manuscript
Resumo:
AbstractBackground:Aerobic fitness, assessed by measuring VO2max in maximum cardiopulmonary exercise testing (CPX) or by estimating VO2max through the use of equations in exercise testing, is a predictor of mortality. However, the error resulting from this estimate in a given individual can be high, affecting clinical decisions.Objective:To determine the error of estimate of VO2max in cycle ergometry in a population attending clinical exercise testing laboratories, and to propose sex-specific equations to minimize that error.Methods:This study assessed 1715 adults (18 to 91 years, 68% men) undertaking maximum CPX in a lower limbs cycle ergometer (LLCE) with ramp protocol. The percentage error (E%) between measured VO2max and that estimated from the modified ACSM equation (Lang et al. MSSE, 1992) was calculated. Then, estimation equations were developed: 1) for all the population tested (C-GENERAL); and 2) separately by sex (C-MEN and C-WOMEN).Results:Measured VO2max was higher in men than in WOMEN: -29.4 ± 10.5 and 24.2 ± 9.2 mL.(kg.min)-1 (p < 0.01). The equations for estimating VO2max [in mL.(kg.min)-1] were: C-GENERAL = [final workload (W)/body weight (kg)] x 10.483 + 7; C-MEN = [final workload (W)/body weight (kg)] x 10.791 + 7; and C-WOMEN = [final workload (W)/body weight (kg)] x 9.820 + 7. The E% for MEN was: -3.4 ± 13.4% (modified ACSM); 1.2 ± 13.2% (C-GENERAL); and -0.9 ± 13.4% (C-MEN) (p < 0.01). For WOMEN: -14.7 ± 17.4% (modified ACSM); -6.3 ± 16.5% (C-GENERAL); and -1.7 ± 16.2% (C-WOMEN) (p < 0.01).Conclusion:The error of estimate of VO2max by use of sex-specific equations was reduced, but not eliminated, in exercise tests on LLCE.
Resumo:
Magdeburg, Univ., Med. Fak., Diss., 2013
Resumo:
Two sweet sorghum varieties, Brandes and Rio, were grown in full strenght and diluted nutrient solutions till completing the life cycle wherein mineral analyses were carried out. As a rule both varieties showed the same capacity to absorb nutrients in the two rates supplied. Dry matter yield, however was different in the dilute nutrient solution. The variety Brandes produced more fresh stalks in the full strength solution than Rio; under nutricional stress the yield was lower. Dry matter of stalks in the case of the variety Rio was consistently higher.
Resumo:
An "in vitro" system has been developed for study of host cell-parasite interaction in visceral and cutaneous leishmaniasis. Avirulent promastigotes of L. brasiliensis and L. donovani, from strains originally isolated from human cases and mantained by serial culture in Davis' Medium were allowed to infect cultured macrophages from rat peritoneal exudate. Challenge of the macrophages by parasites took place in 199 medium, at 33ºC for L. brasiliensis and at 37ºC for L. donovani. Although the rat is resistant to infections by Leishmania spp., the promastigotes not only invaded the host cells, but transformed into amastigotes and later mutiplied, from 10 min after challenge to 24 hours later.
Resumo:
Unstimulated adherent mouse peritoneal cells were cultured in vitro and infected with equal numbers of a single strain of Leishmania m. mexicana amastigotes (AM), virulent promastigotes (VP), avirulent promastigotes (AVP) and fixed promastigotes (FP). Duplicate May-Grünwald-Giemsa stained coverslips were examined at time intervals up to 13 days. By 3 hr post infection, the number of macrophages containing parasites varied between 60.5% (VP) and 84% (AM) for macrophages exposed to living parasites, compared to 6.5% for macrophages exposed for FP. However, variable numbers of parasites showed degenerative changes by 3 hr, and the number of macrophages containing morphologically intact parasites varied significantly between cells infected with AM (84%) and those infected with VP (42%) or AVP(40%). The mean number on intacte parasites/macrophage also differed significantly between AM-infected cells and living or fixed promastigotes-infected cells. Quantitation of intact and degenerated parasites indicated parasite multiplication, as well as destruction, in VP-infected cells and parasite survival and multiplication in AM-infecte monolayers; in contrast no evidence of parasite multiplication was seen in AVP-infected cells. Changes in the mono layer itself (cell loss and macrophage vacuolization) were also evaluated. These results suggest that crucial events determining the outcome of infection occur in the host-parasite relationship during the fist 24 hours of infection. These events are apparently influenced not only by parasite or host strain but by environmentally induced variation within a given strain.
Resumo:
Sulfur (S) is an essential macronutrient for all living organisms. Plants require large amounts of sulfate for growth and development, and this serves as a major entry point of sulfate into the food web. Plants acquire S in its ionic form from the soil; they have evolved tightly controlled mechanisms for the regulation of sulfate uptake in response to its external and internal availability. In the model plant Arabidopsis thaliana, the first key step in sulfate uptake is presumed to be carried out exclusively by only two high-affinity sulfate transporters: SULTR1;1 and SULTR1;2. A better understanding of the mode of regulation for these two transporters is crucial because they constitute the first determinative step in balancing sulfate in respect to its supply and demand. Here, we review the recent progress achieved in our comprehension of (i) mechanisms that regulate these two high-affinity sulfate transporters at the transcriptional and post-transcriptional levels, and (ii) their structure-function relationship. Such progress is important to enable biotechnological and agronomic strategies aimed at enhancing sulfate uptake and improving crop yield in S-deficient soils.
Resumo:
OBJECTIVE: Study of the uptake of new medical technologies provides useful information on the transfer of published evidence into usual practice. We conducted an audit of selected hospitals in three countries (Canada, France, and Switzerland) to identify clinical predictors of low-molecular-weight (LMW) heparin use and outpatient treatment, and to compare the pace of uptake of these new therapeutic approaches across hospitals. DESIGN: Historical review of medical records. SETTING AND PARTICIPANTS: We reviewed the medical records of 3043 patients diagnosed with deep vein thrombosis (DVT) in five Canadian, two French, and two Swiss teaching hospitals from 1994 to 1998. Measures. We explored independent clinical variables associated with LMW heparin use and outpatient treatment, and determined crude and adjusted rates of LMW heparin use and outpatient treatment across hospitals. RESULTS: For the years studied, the overall rates of LMW heparin use and outpatient treatment in the study sample were 34.1 and 15.8%, respectively, with higher rates of use in later years. Many comorbidities were negatively associated with outpatient treatment, and risk-adjusted rates of use of these new approaches varied significantly across hospitals. CONCLUSION: There has been a relatively rapid uptake of LMW heparins and outpatient treatment for DVT in their early years of availability, but the pace of uptake has varied considerably across hospitals and countries.
Resumo:
The mechanisms regulating systemic and mucosal IgA responses in the respiratory tract are incompletely understood. Using virus-like particles loaded with single-stranded RNA as a ligand for TLR7, we found that systemic vs mucosal IgA responses in mice were differently regulated. Systemic IgA responses following s.c. immunization were T cell independent and did not require TACI or TGFbeta, whereas mucosal IgA production was dependent on Th cells, TACI, and TGFbeta. Strikingly, both responses required TLR7 signaling, but systemic IgA depended upon TLR7 signaling directly to B cells whereas mucosal IgA required TLR7 signaling to lung dendritic cells and alveolar macrophages. Our data show that IgA switching is controlled differently according to the cell type receiving TLR signals. This knowledge should facilitate the development of IgA-inducing vaccines.
Resumo:
AIMS: Experimental autoimmune myocarditis (EAM) model mirrors important mechanisms of inflammatory dilated cardiomyopathy (iDCM). In EAM, inflammatory CD133(+) progenitors are a major cellular source of cardiac myofibroblasts in the post-inflammatory myocardium. We hypothesized that exogenous delivery of macrophage-colony-stimulating factor (M-CSF) can stimulate macrophage lineage differentiation of inflammatory progenitors and, therefore, prevent their naturally occurring myofibroblast fate in EAM. METHODS AND RESULTS: EAM was induced in wild-type (BALB/c) and nitric oxide synthase 2-deficient (Nos2(-/-)) mice and CD133(+) progenitors were isolated from inflamed hearts. In vitro, M-CSF converted inflammatory CD133(+) progenitors into nitric oxide-producing F4/80(+) macrophages and prevented transforming growth factor-β-mediated myofibroblast differentiation. Importantly, only a subset of heart-infiltrating CD133(+) progenitors expresses macrophage-specific antigen F4/80 in EAM. These CD133(+)/F4/80(hi) cells show impaired myofibrogenic potential compared with CD133(+)/F4/80(-) cells. M-CSF treatment of wild-type mice with EAM at the peak of disease markedly increased CD133(+)/F4/80(hi) cells in the myocardium, and CD133(+) progenitors isolated from M-CSF-treated mice failed to differentiate into myofibroblasts. In contrast, M-CSF was not effective in converting CD133(+) progenitors from inflamed hearts of Nos2(-/-) mice into macrophages, and M-CSF treatment did not result in increased CD133(+)/F4/80(hi) cell population in hearts of Nos2(-/-) mice. Accordingly, M-CSF prevented post-inflammatory fibrosis and left ventricular dysfunction in wild-type but not in Nos2(-/-) mice. CONCLUSION: Active and NOS2-dependent induction of macrophage lineage differentiation abrogates the myofibrogenic potential of heart-infiltrating CD133(+) progenitors. Modulating the in vivo differentiation fate of specific progenitors might become a novel approach for the treatment of inflammatory heart diseases.