469 resultados para Macchina automatica avvolgipallet


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate performance bounds for feedback control of distributed plants where the controller can be centralized (i.e. it has access to measurements from the whole plant), but sensors only measure differences between neighboring subsystem outputs. Such "distributed sensing" can be a technological necessity in applications where system size exceeds accuracy requirements by many orders of magnitude. We formulate how distributed sensing generally limits feedback performance robust to measurement noise and to model uncertainty, without assuming any controller restrictions (among others, no "distributed control" restriction). A major practical consequence is the necessity to cut down integral action on some modes. We particularize the results to spatially invariant systems and finally illustrate implications of our developments for stabilizing the segmented primary mirror of the European Extremely Large Telescope. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new adaptive state estimation algorithm, namely adaptive fading Kalman filter (AFKF), is proposed to solve the divergence problem of Kalman filter. A criterion function is constructed to measure the optimality of Kalman filter. The forgetting factor in AFKF is adaptively adjusted by minimizing the defined criterion function using measured outputs. The algorithm remains convergent and tends to be optimal in the presence of model errors. It has been successfully applied to the headbox of a paper-making machine for state estimation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The properties of positively invariant sets are involved in many different problems in control theory, such as constrained control, robustness analysis, synthesis and optimization. In this paper we provide an overview of the literature concerning positively invariant sets and their application to the analysis and synthesis of control systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper investigates the two-stage stepwise identification for a class of nonlinear dynamic systems that can be described by linear-in-the-parameters models, and the model has to be built from a very large pool of basis functions or model terms. The main objective is to improve the compactness of the model that is obtained by the forward stepwise methods, while retaining the computational efficiency. The proposed algorithm first generates an initial model using a forward stepwise procedure. The significance of each selected term is then reviewed at the second stage and all insignificant ones are replaced, resulting in an optimised compact model with significantly improved performance. The main contribution of this paper is that these two stages are performed within a well-defined regression context, leading to significantly reduced computational complexity. The efficiency of the algorithm is confirmed by the computational complexity analysis, and its effectiveness is demonstrated by the simulation results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper discusses the design of gain- scheduled sampled-data controllers for continuous-time polytopic linear parameter-varying systems. The scheduling variables are assumed to available only at the sampling instants, and a bound on the time-variation of the scheduling parameters is also assumed to be known. The resultant gain-scheduled controllers improve the maximum achieveable delay bound over previous constant-gain ones in the literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The convergence of the iterative identification algorithm for a general Hammerstein system has been an open problem for a long time. In this paper, it is shown that the convergence can be achieved by incorporating a regularization procedure on the nonlinearity in addition to a normalization step on the parameters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In many situations, the number of data points is fixed, and the asymptotic convergence results of popular model selection tools may not be useful. A new algorithm for model selection, RIVAL (removing irrelevant variables amidst Lasso iterations), is presented and shown to be particularly effective for a large but fixed number of data points. The algorithm is motivated by an application of nuclear material detection where all unknown parameters are to be non-negative. Thus, positive Lasso and its variants are analyzed. Then, RIVAL is proposed and is shown to have some desirable properties, namely the number of data points needed to have convergence is smaller than existing methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we investigate what constitutes the least amount of a priori information on the nonlinearity so that the FIR linear part is identifiable in the non-Gaussian input case. Three types of a priori information are considered including quadrant information, point information and locally monotonous information. In all three cases, identifiability has been established and corresponding identification algorithms are developed with their convergence proofs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper shows that current multivariate statistical monitoring technology may not detect incipient changes in the variable covariance structure nor changes in the geometry of the underlying variable decomposition. To overcome these deficiencies, the local approach is incorporated into the multivariate statistical monitoring framework to define two new univariate statistics for fault detection. Fault isolation is achieved by constructing a fault diagnosis chart which reveals changes in the covariance structure resulting from the presence of a fault. A theoretical analysis is presented and the proposed monitoring approach is exemplified using application studies involving recorded data from two complex industrial processes. © 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multi-vehicle cooperative formation control problem is an important and typical topic of research on multi-agent system. This paper presents a formation stability conjecture to conceive a new methodology for solving the decentralised multi-vehicle formation control problem. It employs the “extension-decomposition-aggregation” scheme to transform the complex multi-agent control problem into a group of sub-problems which is able to be solved conveniently. Based on this methodology, it is proved that if all the individual augmented subsystems can be stabilised by using any approach, the overall formation system is not only asymptotically but also exponentially stable in the sense of Lyapunov within a neighbourhood of the desired formation. Simulation study on 6-DOF aerial vehicles (Aerosonde UAVs) has been performed to verify the achieved formation stability result. The proposed multi-vehicle formation control strategy can be conveniently extended to other cooperative control problems of multi-agent systems.