982 resultados para MUTATIONAL ANALYSIS
Resumo:
PURPOSE: To review our clinical experience and determine if there are appropriate signs and symptoms to consider POLG sequencing prior to valproic acid (VPA) dosing in patients with seizures. METHODS: Four patients who developed VPA-induced hepatotoxicity were examined for POLG sequence variations. A subsequent chart review was used to describe clinical course prior to and after VPA dosing. RESULTS: Four patients of multiple different ethnicities, age 3-18 years, developed VPA-induced hepatotoxicity. All were given VPA due to intractable partial seizures. Three of the patients had developed epilepsia partialis continua. The time from VPA exposure to liver failure was between 2 and 3 months. Liver failure was reversible in one patient. Molecular studies revealed homozygous p.R597W or p.A467T mutations in two patients. The other two patients showed compound heterozygous mutations, p.A467T/p.Q68X and p.L83P/p.G888S. Clinical findings and POLG mutations were diagnostic of Alpers-Huttenlocher syndrome. CONCLUSION: Our cases underscore several important findings: POLG mutations have been observed in every ethnic group studied to date; early predominance of epileptiform discharges over the occipital region is common in POLG-induced epilepsy; the EEG and MRI findings varying between patients and stages of the disease; and VPA dosing at any stage of Alpers-Huttenlocher syndrome can precipitate liver failure. Our data support an emerging proposal that POLG gene testing should be considered in any child or adolescent who presents or develops intractable seizures with or without status epilepticus or epilepsia partialis continua, particularly when there is a history of psychomotor regression.
Resumo:
Chondrocyte gene regulation is important for the generation and maintenance of cartilage tissues. Several regulatory factors have been identified that play a role in chondrogenesis, including the positive transacting factors of the SOX family such as SOX9, SOX5, and SOX6, as well as negative transacting factors such as C/EBP and delta EF1. However, a complete understanding of the intricate regulatory network that governs the tissue-specific expression of cartilage genes is not yet available. We have taken a computational approach to identify cis-regulatory, transcription factor (TF) binding motifs in a set of cartilage characteristic genes to better define the transcriptional regulatory networks that regulate chondrogenesis. Our computational methods have identified several TFs, whose binding profiles are available in the TRANSFAC database, as important to chondrogenesis. In addition, a cartilage-specific SOX-binding profile was constructed and used to identify both known, and novel, functional paired SOX-binding motifs in chondrocyte genes. Using DNA pattern-recognition algorithms, we have also identified cis-regulatory elements for unknown TFs. We have validated our computational predictions through mutational analyses in cell transfection experiments. One novel regulatory motif, N1, found at high frequency in the COL2A1 promoter, was found to bind to chondrocyte nuclear proteins. Mutational analyses suggest that this motif binds a repressive factor that regulates basal levels of the COL2A1 promoter.
Resumo:
Non-protein-coding RNAs are a functionally versatile class of transcripts found in all domains of life exerting their biological role at the RNA level. Recently, we demonstrated that the vault-associated RNAs (vtRNAs) were significantly up-regulated in human B cells upon Epstein-Barr virus (EBV) infection [1,2]. vtRNAs are an integral part of the vault complex, a huge and evolutionarily conserved cytoplasmic ribonucleoprotein complex. The major vault protein (MVP) is the main structural component of the complex while vtRNA accounts for only 5% of its mass. Very little is known about the function(s) of the vtRNAs or the vault complex. In particular the role and significance of the previously observed vtRNA up-regulation upon EBV infection remained unclear. We individually expressed EBV-encoded genes in B cells and found the latent membrane protein 1 (LMP1) as trigger for vtRNA up-regulation. To unravel a putative functional interconnection between vtRNA expression and EBV infection, we ectopically expressed vtRNA1-1 in human B cells and observed an improved viral establishment. Furthermore, expression of vtRNA1-1 but not of the other vtRNA paralogs protected cells from undergoing apoptosis. Knock-down of MVP had no effect on these phenotypes thus revealing the vtRNA and not the vault complex to contribute to the enhanced EBV establishment and apoptosis resistance. Mutational analysis highlighted the central domain of the vtRNA to be involved in the anti-apoptotic effect. Ongoing research aims at characterizing the target of vtRNA1-1 in the apoptotic pathway. In summary, our data reveal a crucial cellular function for the so far elusive RNA biology of the vtRNAs.
Resumo:
FGFRL1 is a single-pass transmembrane protein with three extracellular Ig domains. When overexpressed in CHO cells or related cell types, it induces cell-cell fusion and formation of large, multinucleated syncytia. For this fusion-promoting activity, only the membrane-proximal Ig domain (Ig3) and the transmembrane domain are required. It does not matter whether the transmembrane domain is derived from FGFRL1 or from another receptor, but the distance of the Ig3 domain to the membrane is crucial. Fusion can be inhibited with soluble recombinant proteins comprising the Ig1-Ig2-Ig3 or the Ig2-Ig3 domains as well as with monoclonal antibodies directed against Ig3. Mutational analysis reveals a hydrophobic site in Ig3 that is required for fusion. If a single amino acid from this site is mutated, fusion is abolished. The site is located on a β-sheet, which is part of a larger β-barrel, as predicted by computer modeling of the 3D structure of FGFRL1. It is possible that this site interacts with a target protein of neighboring cells to trigger cell-cell fusion.
Resumo:
Increasing evidence demonstrates that the thrombin receptor (protease activated receptor-1, PAR-1) plays a major role in tumor invasion and contributes to the metastatic phenotype of human melanoma. We demonstrate that the metastatic potential of human melanoma cells correlates with overexpression of PAR-1. The promoter of the PAR-1 gene contains multiple putative AP-2 and Sp1 consensus elements. We provide evidence that an inverse correlation exists between the expression of AP-2 and the expression of PAR-1 in human melanoma cells. Re-expression of AP-2 in WM266-4 melanoma cells (AP-2 negative) resulted in decreased mRNA and protein expression of PAR-1 and significantly reduced the tumor potential in nude mice. ChIP analysis of the PAR-1 promoter regions bp −365 to −329 (complex 1) and bp −206 to −180 (complex 2) demonstrates that in metastatic cells Sp1 is predominantly binding to the PAR-1 promoter, while in nonmetastatic cells AP-2 is bound. In vitro analysis of complex 1 demonstrates that AP-2 and Sp1 bind to this region in a mutually exclusive manner. Transfection experiments with full-length and progressive deletions of the PAR-1 promoter luciferase constructs demonstrated that metastatic cells had increased promoter activity compared to low and nonmetastatic melanoma cells. Our data shows that exogenous AP-2 expression decreased promoter activity, while transient expression of Sp1 further activated expression of the reporter gene. Mutational analysis of complex 1 within PAR-1 luciferase constructs further demonstrates that the regulation of PAR-1 is mediated through interactions with AP-2 and Sp1. Moreover, loss of AP-2 in metastatic cells alters the AP-2 to Sp1 ratio and DNA-binding activity resulting in overexpression of PAR-1. In addition, we evaluated the expression of AP-2 and PAR-1 utilizing a tissue microarray of 93 melanocytic lesions spanning from benign nevi to melanoma metastasis. We report loss of AP-2 expression in malignant tumors compared to benign tissue while PAR-1 was expressed more often in metastatic melanoma cells than in benign melanocytes. We propose that loss of AP-2 results in increased expression of PAR-1, which in turn results in upregulation of gene products that contribute to the metastatic phenotype of melanoma. ^
Resumo:
Oligodendrogliomas are primary neoplasms of the central nervous system (CNS). One of the most common and characteristic chromosomal abnormalities observed in oligodendroglioma is allelic loss of 1p (Reifenberger et al., 1994; Bello et al., 1995). Since 1p loss has been reported for both well-differentiated and anaplastic oligodendroglioma, it is believed to occur early in tumor development (Bello et al., 1995). This allelic loss also has clinical significance, for oligodendroglioma patients with 1p loss generally respond significantly better to combination chemotherapy and have longer average survival than do oligodendroglioma patients without 1p loss (Cairncross et al., 1998). To date, no genes on 1p have been implicated as essential to the development or treatment response of oligodendroglioma. In order to localize and/or identify a gene involved in oligodendroglioma development, I tested 170 oligodendrogliomas for deletions of 1p and tested 26 tumors for differential expression of genes in the region of 1p36. Evidence obtained from these methods implicated two genes, SHREW1 and the gene encoding DNA fragmentation factor beta (DFFB). The function for the SHREW1 locus is currently not well known, but preliminary data suggests that it a novel member of adherens junctions. The DFFB gene is an enhancer for apoptosis. Thus, both SHREW1 and DFFB may be candidates for an oligodendroglioma tumor suppressor. Mutational analysis of both genes did not uncover any mutations. Future studies will evaluate other mechanisms that may be responsible for inactivation of these genes in oligodendrogliomas. ^
Resumo:
Translation termination as a result of premature nonsense codon-incorporation in a RNA transcript can lead to the production of aberrant proteins with gain-of-function or dominant negative properties that could have deletrious effects on the cell. T-cell Receptor (TCR) genes acquire premature termination codons two-thirds of the time as a result of the error-prone programmed rearrangement events that normally occur during T-cell development. My studies have focused on the fate of TCR precursor mRNAs in response to in-frame nonsense mutations. ^ Previous published studies from our laboratory have shown that TCR precursor mRNAs are subject to nonsense mediated upregulation of pre-mRNA (NMUP). In this dissertation, I performed substitution and deletion analysis to characterize specific regions of TCR which are required to elicit NMUP. I performed frame- and factor-dependence studies to determine its relationship with other nonsense codon induced responses using several approaches including (i) translation dependence studies (ii) deletion and mutational analysis, as well as (iii) siRNA mediated knockdown of proteins involved. I also addressed the underlying molecular mechanism for this pre-mRNA upregulation by (i) RNA half-life studies using a c-fos inducible promoter, and (ii) a variety of assays to determine pre-mRNA splicing efficiency. ^ Using these approaches, I have identified a region of TCR that is both necessary and sufficient to elicit (NMUP). I have also found that neither cytoplasmic translation machinery nor the protein UPF1 are involved in eliciting this nuclear event. I have shown that the NMUP can be induced not only by nonsense and frameshift mutations, but also missense mutations that disrupt a cis splicing element in the exon that contains the mutation. However, the effect of nonsense mutations on pre-mRNA is unique and distinguishable from that of missense mutations in that nonsense mutations can upregulate pre-mRNA in a frame-dependent manner. Lastly, I provide evidence that NMUP occurs by a mechanism in which nonsense mutations inhibit the splicing of introns. In summary, I have found that TCR precursor mRNAs are subject to multiple forces involving both RNA splicing and translation that can either increase or decrease the levels of these precursor mRNAs. ^
Resumo:
Bcl-2, a crucial regulator of cell survival, is frequently overexpressed in basal cell carcinomas (BCCs), the most commonly diagnosed cancers. Regulation of bcl-2 expression in epidermal keratinocytes is not well characterized. In the epidermis, bcl-2 is expressed only in keratinocytes of the basal layer and the outer root sheath of hair follicles and no bcl-2 expression in suprabasalar keratinocytes. The calcium gradient in the epidermis is a potent regulator of keratinocyte differentiation. Increasing calcium concentrations associated with differentiation, resulted in the downregulation of a 2.9 kb bcl-2 promoter luciferase construct. The AP-1 family of transcription factors is differentially expressed in the strata of the epidermis and has been shown to be involved in the stage specific expression of numerous differentiation markers in the epidermis. In silico analysis of the bcl-2 promoter and gene reporter assays showed that co-transfection of JUNB and JUND, but not other AP-1 dimers, caused a significant upregulation of the bcl-2 promoter in primary keratinocytes. Immunoelectrophoretic mobility shift assays, in vivo chromatin immunoprecipitation (ChIP) studies and mutational analysis of AP-1 binding site 3 on the bcl-2 promoter identified it as the site involved in bcl-2 regulation. Utilizing site directed mutants, we determined that phosphorylation at Ser90/Ser100 residues of JUND is required for the activation of the bcl-2 promoter. ^ The sonic hedgehog (SHH) pathway is frequently deregulated in BCCs and, we have shown that GLI1 upregulates bcl-2 in keratinocytes. While examining potential regulation of the SHH pathway extracellular calcium, we found that higher calcium concentrations are associated with lowered HH pathway activity and upregulation of suppressor of fused (SUFU) which negatively regulates the SHH pathway. ChIP assays, and in vivo mouse models, show that ΔNp63α, a crucial regulator of epidermal development, binds and activates the SUFU promoter in differentiating keratinocytes. Increasing SUFU levels prevent transactivation of the bcl-2 promoter. In vitro SUFU knockdown along with in vivo SUFU+/− murine models demonstrate a significant upregulation of bcl-2 expression. ^ In conclusion, the spatial and temporal expression of bcl-2 during keratinocyte differentiation in the epidermis is a complex process requiring cooperative interactions of specific signaling cascades and transcription factors. ^
Resumo:
Transcription factors often determine cell fate and tissue development. Chondrogenesis is the developmental process by which cartilages form. Recently, gene targeting studies have shown that two transcription factors, L-Sox5 and Sox6, play essential and redundant roles in chondrogenesis in vivo by converting precartilaginous cell condensations into cartilages. Both are highly similar High-Mobility-Group (HMG)-domain proteins that bind and subsequently bend DNA containing the 7bp HMG site (A/T)(A/T)CAA(A/T)G. They have no transactivation domain, but homo- and hetero-dimerize and preferentially bind DNA containing two HMG sites. They are thought to play an architectural role in transactivation by facilitating long-range DNA and protein interactions. To understand their molecular mechanism of action, we investigated how phasing, orientation, and spacing between HMG sites affect L-Sox5 and Sox6 DNA-binding. We determined that L-Sox5 and Sox6 dimers bind with high affinity to paired HMG sites in DNA rather than a single HMG site. Binding of paired sites is independent of DNA helical phasing, orientation of paired HMG sites and independent of distance up to 255 base pairs between sites. Mutational analysis demonstrated that binding of L-Sox5 and Sox6, independent of orientation of the sites, is critically dependent on the presence of paired HMG sites rather than one HMG site alone. Our data support a unique and novel model whereby L-Sox5 and Sox6 dimerize and bind DNA with pronounced spatial flexibility, possibly by a flexible hinge, and act as architectural transcription factors that bring distant DNA sites and proteins together to form higher order transcriptional complexes that are essential for the activation of their target genes in chondrogenesis. ^
Resumo:
Feline immunodeficiency virus (FIV)-based gene transfer systems are being seriously considered for human gene therapy as an alternative to vectors based on primate lentiviruses, a genetically complex group of retroviruses capable of infecting non-dividing cells. The greater phylogenetic distance between the feline and primate lentiviruses is thought to reduce chances of the generation of recombinant viruses. However, safety of FIV-based vector systems has not been tested experimentally. Since primate lentiviruses such as human and simian immunodeficiency viruses (HIV/SIV) can cross-package each other's genomes, we tested this trait with respect to FIV. Unexpectedly, both feline and primate lentiviruses were reciprocally able to both cross-package and propagate each other's RNA genomes. This was largely due to the recognition of viral packaging signals by the heterologous proteins. However, a simple retrovirus such as Mason-Pfizer monkey virus (MPMV) was unable to package FIV RNA. Interestingly, FIV could package MPMV RNA, but not propagate it for further steps of replication. These findings suggest that upon co-infection of the same host, cross-packaging may allow distinct retroviruses to generate chimeric variants with unknown pathogenic potential. ^ In order to understand the packaging determinants in FIV, we conducted a detailed mutational analysis of the region thought to contain FIV packaging signal. We show that the first 90–120 nt of the 5′ untranslated region (UTR) and the first 90 nt of gag were simultaneously required for efficient FIV RNA packaging. These results suggest that the primary FIV packaging signal is multipartite and discontinuous, composed of two core elements separated by 150 nt of the 5 ′UTR. ^ The above studies are being used towards the development of safer FIV-based self-inactivating (SIN) vectors. These vectors are being designed to eliminate the ability of FIV transfer vector RNAs to be mobilized by primate lentiviral proteins that may be present in the target cells. Preliminary test of the first generation of these vectors has revealed that they are incapable of being propagated by feline proteins. The inability of FIV transfer vectors to express packageable vector RNA after integration should greatly increase the safety of FIV vectors for human gene therapy. ^
Resumo:
Molecular events involved in specification of early hematopoietic system are not well known. In Xenopus, a paired-box homeodomain family (Mix.1–4) has been implicated in this process. Although Mix-like homeobox genes have been isolated from zebrafish (bon), chicken (CMIX) and mice (MmI/MIXL1), isolation of a human Mix-like gene has remained elusive. ^ We have recently isolated and characterized a novel human Mix-like homeobox gene with a predicted open reading frame of 232 amino acids designated the Mix.1 homeobox (Xenopus laevis)-like gene (MIXL). The overall identity of this novel protein to CMIX and MmI/MIXL1 is 41% and 69%, respectively. However, the identity in the homeodomain is 66% to that of Xenopus Mix.1, 79% to that of CMIX, and 94% to that of MmI/MIXL1. In normal hematopoiesis, MIXL expression appears to be restricted immature B and T lymphoid cells. Several acute leukemic cell lines of B, T and myeloid lineages express MIXL suggesting a survival/block in differentiation advantage. Furthermore, Xenopus animal cap assay revealed that MIXL could induce expression of the α-globin gene, suggesting a functional conservation of the homeodomain. ^ Biochemical analysis revealed that MIXL proteins are phosphorylated at multiple sites. Immunoprecipitation and immunoblotting confirmed that MIXL is tyrosine phosphorylated. Mutational analysis determined that Tyr20 appears to be the site for phosphorylation. However, deletion analysis preliminarily showed that the proline-rich domain appears not to be necessary for tyrosine phosphorylation. The novel finding will help us make a deeper understanding of the regulation on homeodomain proteins by rarely reported tyrosine phosphorylation. ^ Taken together, isolation of the MIXL gene is the first step toward understanding novel regulatory circuits in early hematopoietic differentiation and malignant transformation. ^
Resumo:
AP-2γ is a member of the AP-2 transcription factor family, is highly enriched in the trophoblast cell lineage, and is essential for placenta development. In an effort to identify factors regulating AP-2γ gene expression we isolated and characterized the promoter and 5′ flanking region of the mouse and human AP-2γ genes. The transcription start site of the mouse AP-2γ gene was mapped by primer extension and 5′ RACE. Transient gene transfer studies showed that basal promoter activity resides within a highly conserved ∼200 by DNA sequence located immediately upstream of the transcription start site. The conserved region is highly GC-rich and lacks typical TATA or CCAAT boxes. Multiple potential Sp and AP-2 binding sites are clustered within this region. Electrophoretic mobility shift assays demonstrated that Sp1 and Sp3 bind to three sites in the promoter region of the mouse AP-2γ gene. Combined mutation of the three putative Sp sites reduced promoter activity by 80% in trophoblast and non-trophoblast cells, demonstrating the functional importance of these sites in AP-2γ gene expression. ^ Mutational analysis of the 5′-flanking region revealed a 117-bp positive regulatory region of the mouse AP-2γ gene located between −5700 and −5583 upstream of the transcription start site. This 117-bp positive regulatory element provided approximately 7-fold enhancement of reporter gene expression in cultured trophoblast cells. A C/EBP-Sp1 transcription factor-binding module is located in this DNA sequence. Electrophoretic mobility shift assays demonstrated that transcription factors Sp1, Sp3 and C/EBP bind to the enhancer element. Mutation of each protein-binding site reduced the enhanced expression significantly. Mutagenesis assays showed that two other protein-binding sites also contribute to the enhancer activity. In summary, we have shown that Sp1 and Sp3 bind to cis-regulatory elements located in the promoter region and contribute to basal promoter activity. We have identified a 117-bp positive regulatory element of AP-2γ gene, and we have shown that Sp and C/EBP proteins bind to the cis -regulatory elements and contribute to the enhanced gene expression. ^
Resumo:
Some group I introns self-splice in vitro, but almost all are thought to be assisted by proteins in vivo. Mutational analysis has shown that the splicing of certain group I introns depends upon a maturase protein encoded by the intron itself. However the effect of a protein on splicing can be indirect. We now provide evidence that a mitochondrial intron-encoded protein from Aspergillus nidulans directly facilitates splicing in vitro. This demonstrates that a maturase is an RNA splicing protein. The protein-assisted reaction is as fast as that of any other known group I intron. Interestingly the protein is also a DNA endonuclease, an activity required for intron mobilization. Mobile elements frequently encode proteins that promote their propagation. Intron-encoded proteins that also assist RNA splicing would facilitate both the transposition and horizontal transmission of introns.
Resumo:
The inv(16) is one of the most frequent chromosomal translocations associated with acute myeloid leukemia (AML). The inv(16) fusion protein acts by dominantly interfering with AML-1/core binding factor β-dependent transcriptional regulation. Here we demonstrate that the inv(16) fusion protein cooperates with AML-1B to repress transcription. This cooperativity requires the ability of the translocation fusion protein to bind to AML-1B. Mutational analysis and cell fractionation experiments indicated that the inv(16) fusion protein acts in the nucleus and that repression occurs when the complex is bound to DNA. We also found that the inv(16) fusion protein binds to AML-1B when it is associated with the mSin3A corepressor. An AML-1B mutant that fails to bind mSin3A was impaired in cooperative repression, suggesting that the inv(16) fusion protein acts through mSin3 and possibly other corepressors. Finally, we demonstrate that the C-terminal portion of the inv(16) fusion protein contains a repression domain, suggesting a molecular mechanism for AML-1-mediated repression.
Resumo:
We have used the interaction between the erythroid-specific enhancer in hypersensitivity site 2 of the human β-globin locus control region and the globin gene promoters as a paradigm to examine the mechanisms governing promoter/enhancer interactions in this locus. We have demonstrated that enhancer-dependent activation of the globin promoters is dependent on the presence of both a TATA box in the proximal promoter and the binding site for the erythroid-specific heteromeric transcription factor NF-E2 in the enhancer. Mutational analysis of the transcriptionally active component of NF-E2, p45NF-E2, localizes the critical region for this function to a proline-rich transcriptional activation domain in the NH2-terminal 80 amino acids of the protein. In contrast to the wild-type protein, expression of p45 NF-E2 lacking this activation domain in an NF-E2 null cell line fails to support enhancer-dependent transcription in transient assays. More significantly, the mutated protein also fails to reactivate expression of the endogenous β- or α-globin loci in this cell line. Protein-protein interaction studies reveal that this domain of p45 NF-E2 binds specifically to a component of the transcription initiation complex, TATA binding protein associated factor TAFII130. These findings suggest one potential mechanism for direct recruitment of distal regulatory regions of the globin loci to the individual promoters.