995 resultados para MULTIREFERENCE CONFIGURATION-INTERACTION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Histomorphological features of colorectal cancers (CRC) represent valuable prognostic indicators for clinical decision making. The invasive margin is a central feature for prognostication shaped by the complex processes governing tumor-host interaction. Assessment of the tumor border can be performed on standard paraffin sections and shows promise for integration into the diagnostic routine of gastrointestinal pathology. In aggressive CRC, an extensive dissection of host tissue is seen with loss of a clear tumor-host interface. This pattern, termed "infiltrative tumor border configuration" has been consistently associated with poor survival outcome and early disease recurrence of CRC-patients. In addition, infiltrative tumor growth is frequently associated with presence of adverse clinicopathological features and molecular alterations related to aggressive tumor behavior including BRAFV600 mutation. In contrast, a well-demarcated "pushing" tumor border is seen frequently in CRC-cases with low risk for nodal and distant metastasis. A pushing border is a feature frequently associated with mismatch-repair deficiency and can be used to identify patients for molecular testing. Consequently, assessment of the tumor border configuration as an additional prognostic factor is recommended by the AJCC/UICC to aid the TNM-classification. To promote the assessment of the tumor border configuration in standard practice, consensus criteria on the defining features and method of assessment need to be developed further and tested for inter-observer reproducibility. The development of a standardized quantitative scoring system may lay the basis for verification of the prognostic associations of the tumor growth pattern in multivariate analyses and clinical trials. This article provides a comprehensive review of the diagnostic features, clinicopathological associations, and molecular alterations associated with the tumor border configuration in early stage and advanced CRC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An axisymmetric, elastic pipe is filled with an incompressible fluid and is immersed in a second, coaxial rigid pipe which contains the same fluid. A pressure pulse in the outer fluid annulus deforms the elastic pipe which invokes a fluid motion in the fluid core. It is the aim of this study to investigate streaming phenomena in the core which may originate from such a fluid-structure interaction. This work presents a numerical solver for such a configuration. It was developed in the OpenFOAM software environment and is based on the Arbitrary Lagrangian Eulerian (ALE) approach for moving meshes. The solver features a monolithic integration of the one-dimensional, coupled system between the elastic structure and the outer fluid annulus into a dynamic boundary condition for the moving surface of the fluid core. Results indicate that our configuration may serve as a mechanical model of the Tullio Phenomenon (sound-induced vertigo).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work describes a semantic extension for a user-smart object interaction model based on the ECA paradigm (Event-Condition-Action). In this approach, smart objects publish their sensing (event) and action capabilities in the cloud and mobile devices are prepared to retrieve them and act as mediators to configure personalized behaviours for the objects. In this paper, the information handled by this interaction system has been shaped according several semantic models that, together with the integration of an embedded ontological and rule-based reasoner, are exploited in order to (i) automatically detect incompatible ECA rules configurations and to (ii) support complex ECA rules definitions and execution. This semantic extension may significantly improve the management of smart spaces populated with numerous smart objects from mobile personal devices, as it facilitates the configuration of coherent ECA rules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Raman scattering of Si nanowires (NWs) presents antenna effects. The electromagnetic resonance depends on the electromagnetic coupling of the system laser/NW/substrate. The antenna effect of the Raman signal was measured in individual NWs deposited on different substrates, and also free standing NWs in air. The one phonon Raman band in NWs can reach high intensities depending on the system configuration; values of Raman intensity per unit volume more than a few hundred times with respect to bulk substrate can be obtainedRaman scattering of Si nanowires (NWs) presents antenna effects. The electromagnetic resonance depends on the electromagnetic coupling of the system laser/NW/substrate. The antenna effect of the Raman signal was measured in individual NWs deposited on different substrates, and also free standing NWs in air. The one phonon Raman band in NWs can reach high intensities depending on the system configuration; values of Raman intensity per unit volume more than a few hundred times with respect to bulk substrate can be obtained

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantum mechanics predicts that our physical reality is influenced by events that can potentially happen but factually do not occur. Interaction-free measurements (IFMs) exploit this counterintuitive influence to detect the presence of an object without requiring any interaction with it. Here we propose and realize an IFM concept based on an unstable many-particle system. In our experiments, we employ an ultracold gas in an unstable spin configuration, which can undergo a rapid decay. The object-realized by a laser beam-prevents this decay because of the indirect quantum Zeno effect and thus, its presence can be detected without interacting with a single atom. Contrary to existing proposals, our IFM does not require single-particle sources and is only weakly affected by losses and decoherence. We demonstrate confidence levels of 90%, well beyond previous optical experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, the effects of chemotaxis and steric interactions in active suspensions are analyzed by extending the kinetic model proposed by Saintillan and Shelley [1, 2]. In this model, a conservation equation for the active particle configuration is coupled to the Stokes equation for the flow arising from the force dipole exerted by the particles on the fluid. The fluid flow equations are solved spectrally and the conservation equation is solved by second-order finite differencing in space and second-order Adams-Bashforth time marching. First, the dynamics in suspensions of oxytactic run-and-tumble bacteria confined in thin liquid films surrounded by air is investigated. These bacteria modify their tumbling behavior by making temporal comparisons of the oxygen concentration, and, on average, swim towards high concentrations of oxygen. The kinetic model proposed by Saintillan and Shelley [1, 2] is modified to include run-and-tumble effects and oxygentaxis. The spatio-temporal dynamics of the oxygen and bacterial concentration are analyzed. For small film thicknesses, there is a weak migration of bacteria to the boundaries, and the oxygen concentration is high inside the film as a result of diffusion; both bacterial and oxygen concentrations quickly reach steady states. Above a critical film thickness (approximately 200 micron), a transition to chaotic dynamics is observed and is characterized by turbulent-like 3D motion, the formation of bacterial plumes, enhanced oxygen mixing and transport into the film, and hydrodynamic velocities of magnitudes up to 7 times the single bacterial swimming speed. The simulations demonstrate that the combined effects of hydrodynamic interactions and oxygentaxis create collective three-dimensional instabilities which enhances oxygen availability for the bacteria. Our simulation results are consistent with the experimental findings of Sokolov et al. [3], who also observed a similar transition with increasing film thickness. Next, the dynamics in concentrated suspensions of active self-propelled particles in a 3D periodic domain are analyzed. We modify the kinetic model of Saintillan and Shelley [1, 2] by including an additional nematic alignment torque proportional to the local concentration in the equation for the rotational velocity of the particles, causing them to align locally with their neighbors (Doi and Edwards [4]). Large-scale three- dimensional simulations show that, in the presence of such a torque both pusher and puller suspensions are unstable to random fluctuations and are characterized by highly nematic structures. Detailed measures are defined to quantify the degree and direction of alignment, and the effects of steric interactions on pattern formation will be presented. Our analysis shows that steric interactions have a destabilizing effect in active suspensions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper demonstrates that in order to understand and design for interactions in complex work environments, a variety of representational artefacts must be developed and employed. A study was undertaken to explore the design of better interaction technologies to support patient record keeping in a dental surgery. The domain chosen is a challenging real context that exhibits problems that could potentially be solved by ubiquitous computing and multi-modal interaction technologies. Both transient and durable representations were used to develop design understandings. We describe the representations, the kinds of insights developed from the representations and the way that the multiple representations interact and carry forward in the design process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the many new opportunities that digital technologies are enabling are an increased capacity for viewers to interact not only with the program content, but with an increasingly wide array of other digital applications. Within this context this project has developed a new interaction device (incorporating gestural platform technology) and user interfaces to facilitate interactive access to digital media in a lounge room setting. This paper provides an overview of an interdisciplinary design process applied by Australasian CRC for Interaction Design (ACID) researchers—in order to develop the device and present in detail its unique features.