926 resultados para MOLECULAR-WEIGHT MEASUREMENTS
Resumo:
Foi solicitada observação por Dermatologia de uma doente de 35 anos de idade, de raça negra, por 2 nódulos subcutâneos localizados na região paraumbilical direita e flanco direito com 2 semanas de evolução. Da história prévia, destaque para doença renal crónica em programa de hemodiálise e infeção pelo vírus da imunodeficiência humana (VIH-1). Ao exame objetivo observaram-se 2 nódulos bem delimitados, subcutâneos, sem alteração da coloração; à palpação, estes eram dolorosos, de consistência pétrea e não aderentes aos planos profundos. Foi realizada biópsia incisional para exame histopatológico, que confirmou a hipótese diagnóstica de calcinose cutis. Uma revisão cuidadosa de toda a medicação realizada permitiu estabelecer a relação entre este achado e a administração subcutânea de nadroparina cálcica nessa localização, umas semanas antes. A dermatose regrediu espontaneamente em 2 meses após a suspensão das injeções subcutâneas de nadroparina cálcica. A calcinose cutis devida à administração de heparinas de baixo peso molecular contendo cálcio é rara, admitindo-se que elevação do produto fósforo-cálcio possa ser determinante na sua fisiopatologia. É geralmente autolimitada, resolvendo espontaneamente.
Resumo:
Tese de Doutoramento em Ciências (área de especialização em Química)
Resumo:
In this report we present a concise review concerning the use of flow cytometric methods to characterize and differentiate between two different mechanisms of cell death, apoptosis and necrosis. The applications of these techniques to clinical and basic research are also considered. The following cell features are useful to characterize the mode of cell death: (1) activation of an endonuclease in apoptotic cells results in extraction of the low molecular weight DNA following cell permeabilization, which, in turn, leads to their decreased stainability with DNA-specific fluorochromes. Measurements of DNA content make it possible to identify apoptotic cells and to recognize the cell cycle phase specificity of apoptotic process; (2) plasma membrane integrity, which is lost in necrotic but not in apoptotic cells; (3) the decrease in forward light scatter, paralleled either by no change or an increase in side scatter, represent early changes during apoptosis. The data presented indicate that flow cytometry can be applied to basic research of the molecular and biochemical mechanisms of apoptosis, as well as in the clinical situations, where the ability to monitor early signs of apoptosis in some systems may be predictive for the outcome of some treatment protocols.
Resumo:
Sequencing of a fragment of Helicobacter pylori genome led to the identification of two open reading frames showing striking homology with Coenzyme A (CoA) transferases, enzymes catalyzing the reversible transfer of CoA from one carboxylic acid to another. The genes were present in all H. pylori strains tested by polymerase chain reaction or slot blotting but not in Campylobacter jejuni. Genes for the putative A and B subunits of H. pylori CoA-transferase were introduced into the bacterial expression vector pKK223-3 and expressed in Escherichia coli JM105 cells. Amino acid sequence comparisons, combined with measurements of enzyme activities using different CoA donors and acceptors, identified the H. pylori CoA-transferase as a succinyl CoA:acetoacetate CoA-transferase. This activity was consistently observed in different H. pylori strains. Antibodies raised against either recombinant A or B subunits recognized two distinct subunits of Mr approximately 26,000 and 24, 000 that are both necessary for H. pylori CoA-transferase function. The lack of alpha-ketoglutarate dehydrogenase and of succinyl CoA synthetase activities indicates that the generation of succinyl CoA is not mediated by the tricarboxylic acid cycle in H. pylori. We postulate the existence of an alternative pathway where the CoA-transferase is essential for energy metabolism.
Resumo:
Velocity has been measured as a function of time for propagating crack tips as water is injected into solutions of end-capped associating polymers in a rectanguar Hele-Shaw cell. Measurements were performed for flows with different values of cell gap, channel width, polymer molecular weight, and polymer concentration. The condition for the onset of fracturelike behavior is well described by a Deborah number which uses the shear-thinning shear rate of the polymer solution as a characteristic frequency for network relaxation. At low molecular weight, the onset of fracturelike pattern evolution is accompanied by an abrupt jump in tip velocity, followed by a lower and approximately constant acceleration. At high molecular weight, the transition to fracturelike behavior involves passing through a regime that may be understood in terms of stick-slip dynamics. The crack-tip wanders from side to side and fluctuates (in both speed and velocity along the channel) with a characteristic frequency which depends linearly on the invading fluid injection rate.
Resumo:
BACKGROUND: We have developed a nonviral gene therapy method based on the electrotransfer of plasmid in the ciliary muscle. These easily accessible smooth muscle cells could be turned into a biofactory for any therapeutic proteins to be secreted in a sustained manner in the ocular media. METHODS: Electrical conditions, design of electrodes, plasmid formulation, method and number of injections were optimized in vivo in the rat by localizing β-galactosidase expression and quantifying reporter (luciferase) and therapeutic (anti-tumor necrosis factor) proteins secretion in the ocular media. Anatomical measurements were performed via human magnetic resonance imaging to design a human eye-sized prototype that was tested in the rabbit. RESULTS: In the rat, transscleral injection of 30 µg of plasmid diluted in half saline (77 mM NaCl) followed by application of eight square-wave electrical pulses (15 V, 10 ms, 5.3 Hz) using two platinum/iridium electrodes, an internal wire and an external sheet, delivered plasmid efficiently to the ciliary muscle fibers. Gene transfer resulted in a long-lasting (at least 5 months) and plasmid dose-/injection number- dependent secretion of different molecular weight proteins mainly in the vitreous, without any systemic exposure. Because ciliary muscle anatomical measurements remained constant among ages in adult humans, an integrated device comprising needle-electrodes was designed and manufactured. Its usefulness was validated in the rabbit. CONCLUSIONS: Plasmid electrotransfer to the ciliary muscle with a suitable medical device represents a promising local and sustained protein delivery system for treating posterior segment diseases, avoiding repeated intraocular injections.
Resumo:
The oligomeric state of BAFF (B cell activing factor), a tumor necrosis factor (TNF) family cytokine that plays a critical role in B cell development and survival, has been the subject of recent debate. Myc-tagged BAFF starting at residue Gln136 was previously reported to crystallize as trimers at pH 4.5, whereas a histidine-tagged construct of BAFF, starting at residue Ala134, formed a virus-like cluster containing 60 monomers when crystallized at pH 9.0. The formation of the BAFF 60-mer was pH dependent, requiring pH >or= 7.0. More recently, 60-mer formation was suggested to be artificially induced by the histidine tag, and it was proposed that BAFF, like all other TNF family members, is trimeric. We report here that a construct of BAFF with no amino-terminal tag (Ala134-BAFF) can form a 60-mer in solution. Using size exclusion chromatography and static light scattering to monitor trimer to 60-mer ratios in BAFF preparations, we find that 60-mer formation is pH-dependent and requires histidine 218 within the DE loop of BAFF. Biacore measurements established that the affinity of Ala134-BAFF for the BAFF receptor BAFFR/BR3 is similar to that of myc-Gln136-BAFF, which is exclusively trimeric in solution. However, Ala134-BAFF is more efficacious than myc-Gln136-BAFF in inducing B cell proliferation in vitro. We additionally show that BAFF that is processed and secreted by 293T cells transfected with full-length BAFF, or by a histiocytic lymphoma cell line (U937) that expresses BAFF endogenously, forms a pH-dependent 60-mer in solution. Our results indicate that the formation of the 60-mer in solution by the BAFF extracellular domain is an intrinsic property of the protein, and therefore that this more active form of BAFF may be physiologically relevant.
Resumo:
Small centrifugal compressors are more and more widely used in many industrialsystems because of their higher efficiency and better off-design performance comparing to piston and scroll compressors as while as higher work coefficient perstage than in axial compressors. Higher efficiency is always the aim of the designer of compressors. In the present work, the influence of four partsof a small centrifugal compressor that compresses heavy molecular weight real gas has been investigated in order to achieve higher efficiency. Two parts concern the impeller: tip clearance and the circumferential position of the splitter blade. The other two parts concern the diffuser: the pinch shape and vane shape. Computational fluid dynamics is applied in this study. The Reynolds averaged Navier-Stokes flow solver Finflo is used. The quasi-steady approach is utilized. Chien's k-e turbulence model is used to model the turbulence. A new practical real gas model is presented in this study. The real gas model is easily generated, accuracy controllable and fairly fast. The numerical results and measurements show good agreement. The influence of tip clearance on the performance of a small compressor is obvious. The pressure ratio and efficiency are decreased as the size of tip clearance is increased, while the total enthalpy rise keeps almost constant. The decrement of the pressure ratio and efficiency is larger at higher mass flow rates and smaller at lower mass flow rates. The flow angles at the inlet and outlet of the impeller are increased as the size of tip clearance is increased. The results of the detailed flow field show that leakingflow is the main reason for the performance drop. The secondary flow region becomes larger as the size of tip clearance is increased and the area of the main flow is compressed. The flow uniformity is then decreased. A detailed study shows that the leaking flow rate is higher near the exit of the impeller than that near the inlet of the impeller. Based on this phenomenon, a new partiallyshrouded impeller is used. The impeller is shrouded near the exit of the impeller. The results show that the flow field near the exit of the impeller is greatly changed by the partially shrouded impeller, and better performance is achievedthan with the unshrouded impeller. The loading distribution on the impeller blade and the flow fields in the impeller is changed by moving the splitter of the impeller in circumferential direction. Moving the splitter slightly to the suction side of the long blade can improve the performance of the compressor. The total enthalpy rise is reduced if only the leading edge of the splitter ismoved to the suction side of the long blade. The performance of the compressor is decreased if the blade is bended from the radius direction at the leading edge of the splitter. The total pressure rise and the enthalpy rise of thecompressor are increased if pinch is used at the diffuser inlet. Among the fivedifferent pinch shape configurations, at design and lower mass flow rates the efficiency of a straight line pinch is the highest, while at higher mass flow rate, the efficiency of a concave pinch is the highest. The sharp corner of the pinch is the main reason for the decrease of efficiency and should be avoided. The variation of the flow angles entering the diffuser in spanwise direction is decreased if pinch is applied. A three-dimensional low solidity twisted vaned diffuser is designed to match the flow angles entering the diffuser. The numerical results show that the pressure recovery in the twisted diffuser is higher than in a conventional low solidity vaned diffuser, which also leads to higher efficiency of the twisted diffuser. Investigation of the detailed flow fields shows that the separation at lower mass flow rate in the twisted diffuser is later than in the conventional low solidity vaned diffuser, which leads to a possible wider flow range of the twisted diffuser.
Resumo:
An overview of the current literature on the chemical processes involved in the ion formation from low molecular weight organic compounds by electrospray ionization mass spectrometry is given.
Resumo:
Gasification of biomass is an efficient method process to produce liquid fuels, heat and electricity. It is interesting especially for the Nordic countries, where raw material for the processes is readily available. The thermal reactions of light hydrocarbons are a major challenge for industrial applications. At elevated temperatures, light hydrocarbons react spontaneously to form higher molecular weight compounds. In this thesis, this phenomenon was studied by literature survey, experimental work and modeling effort. The literature survey revealed that the change in tar composition is likely caused by the kinetic entropy. The role of the surface material is deemed to be an important factor in the reactivity of the system. The experimental results were in accordance with previous publications on the subject. The novelty of the experimental work lies in the used time interval for measurements combined with an industrially relevant temperature interval. The aspects which are covered in the modeling include screening of possible numerical approaches, testing of optimization methods and kinetic modelling. No significant numerical issues were observed, so the used calculation routines are adequate for the task. Evolutionary algorithms gave a better performance combined with better fit than the conventional iterative methods such as Simplex and Levenberg-Marquardt methods. Three models were fitted on experimental data. The LLNL model was used as a reference model to which two other models were compared. A compact model which included all the observed species was developed. The parameter estimation performed on that model gave slightly impaired fit to experimental data than LLNL model, but the difference was barely significant. The third tested model concentrated on the decomposition of hydrocarbons and included a theoretical description of the formation of carbon layer on the reactor walls. The fit to experimental data was extremely good. Based on the simulation results and literature findings, it is likely that the surface coverage of carbonaceous deposits is a major factor in thermal reactions.
Resumo:
Changes in plasma von Willebrand factor concentration (VWF:Ag) and ADAMTS-13 activity (the metalloprotease that cleaves VWF physiologically) have been reported in several cardiovascular disorders with prognostic implications. We therefore determined the level of these proteins in the plasma of children with cyanotic congenital heart disease (CCHD) undergoing surgical treatment. Forty-eight children were enrolled (age 0.83 to 7.58 years). Measurements were performed at baseline and 48 h after surgery. ELISA, collagen-binding assays and Western blotting were used to estimate antigenic and biological activities, and proteolysis of VWF multimers. Preoperatively, VWF:Ag and ADAMTS-13 activity were decreased (65 and 71% of normal levels considered as 113 (105-129) U/dL and 91 ± 24% respectively, P < 0.003) and correlated (r = 0.39, P = 0.0064). High molecular weight VWF multimers were not related, suggesting an interaction of VWF with cell membranes, followed by proteolytic cleavage. A low preoperative ADAMTS-13 activity, a longer activated partial thromboplastin time and the need for cardiopulmonary bypass correlated with postoperative bleeding (P < 0.05). Postoperatively, ADAMTS-13 activity increased but less extensively than VWF:Ag (respectively, 2.23 and 2.83 times baseline, P < 0.0001), resulting in an increased VWF:Ag/ADAMTS-13 activity ratio (1.20 to 1.54, respectively, pre- and postoperative median values, P = 0.0029). ADAMTS-13 consumption was further confirmed by decreased ADAMTS-13 antigenic concentration (0.91 ± 0.30 to 0.70 ± 0.25 µg/mL, P < 0.0001) and persistent proteolysis of VWF multimers. We conclude that, in pediatric CCHD, changes in circulating ADAMTS-13 suggest enzyme consumption, associated with abnormal structure and function of VWF.
Resumo:
Poly-L-lactide (PLLA) is a widely used sustainable and biodegradable alternative to replace synthetic non-degradable plastic materials in the packaging industry. Conversely, its processing properties are not always optimal, e.g. insufficient melt strength at higher temperatures (necessary in extrusion coating processes). This thesis reports on research to improve properties of commercial PLLA grade (3051D from NatureWorks), to satisfy and extend end-use applications, such as food packaging by blending with modified PLLA. Adjustment of the processability by chain branching of commercial poly-L-lactide initiated by peroxide was evaluated. Several well-defined branched structures with four arms (sPLLA) were synthesized using pentaerythritol as a tetra-functional initiator. Finally, several block copolymers consisting of polyethylene glycol and PLLA (i.e. PEGLA) were produced to obtain a well extruded material with improved heat sealing properties. Reactive extrusion of poly-L-lactide was carried out in the presence of 0.1, 0.3 and 0.5 wt% of various peroxides [tert-butyl-peroxybenzoate (TBPB), 2,5-dimethyl-2,5-(tert-butylperoxy)-hexane (Lupersol 101; LOL1) and benzoyl peroxide (BPO)] at 190C. The peroxide-treated PLLAs showed increased complex viscosity and storage modulus at lower frequencies, indicating the formation of branched/cross linked architectures. The material property changes were dependent on the peroxide, and the used peroxide concentration. Gel fraction analysis showed that the peroxides, afforded different gel contents, and especially 0.5 wt% peroxide, produced both an extremely high molar mass, and a cross linked structure, not perhaps well suited for e.g. further use in a blending step. The thermal behavior was somewhat unexpected as the materials prepared with 0.5 wt% peroxide showed the highest ability for crystallization and cold crystallization, despite substantial cross linking. The peroxide-modified PLLA, i.e. PLLA melt extruded with 0.3 wt% of TBPB and LOL1 and 0.5 wt% BPO was added to linear PLLA in ratios of 5, 15 and 30 wt%. All blends showed increased zero shear viscosity, elastic nature (storage modulus) and shear sensitivity. All blends remained amorphous, though the ability of annealing was improved slightly. Extrusion coating on paperboard was conducted with PLLA, and peroxide-modified PLLA blends (90:10). All blends were processable, but only PLLA with 0.3 wt% of LOL1 afforded a smooth high quality surface with improved line speed. Adhesion levels between fiber and plastic, as well as heat seal performance were marginally reduced compared with pure 3051D. The water vapor transmission measurements (WVTR) of the blends containing LOL1 showed acceptable levels, only slightly lower than for comparable PLLA 3051D. A series of four-arm star-shaped poly-L-lactide (sPLLA) with different branch length was synthesized by ring opening polymerization (ROP) of L-lactide using pentaerythritol as initiator and stannous octoate as catalyst. The star-shaped polymers were further blended with its linear resin and studied for their melt flow and thermal properties. Blends containing 30 wt% of sPLLA with low molecular weight (30 wt%; Mwtotal: 2500 g mol-1 and 15000 g mol-1) showed lower zero shear viscosity and significantly increased shear thinning, while at the same time slightly increased crystallization of the blend. However, the amount of crystallization increased significantly with the higher molecular weight sPLLA, therefore the star-shaped structure may play a role as nucleating agent. PLLA-polyethylene glycol–PLLA triblock copolymers (PEGLA) with different PLLA block length were synthesized and their applicability as blends with linear PLLA (3051D NatureWorks) was investigated with the intention of improving heat-seal and adhesion properties of extrusion-coated paperboard. PLLA-PEG-PLLA was obtained by ring opening polymerization (ROP) of L-lactide using PEG (molecular weight 6000 g mol-1) as an initiator, and stannous octoate as catalyst. The structures of the PEGLAs were characterized by proton nuclear magnetic resonance spectroscopy (1H-NMR). The melt flow and thermal properties of all PEGLAs and their blends were evaluated using dynamic rheology, and differential scanning calorimeter (DSC). All blends containing 30 wt% of PEGLAs showed slightly higher zero shear viscosity, higher shear thinning and increased melt elasticity (based on tan delta). Nevertheless, no significant changes in thermal properties were distinguished. High molecular weight PEGLAs were used in extrusion coating line with 3051D without problems.
Resumo:
Cette thèse rapporte le greffage chimique de brosses de polymères neutres de poly(acrylate de tert-butyle) (PtBA) et de brosses chargées d’acide polyacrylique (PAA) sur des substrats de mica afin d’étudier leur conformation en fonction de la densité de greffage, du pH et de la force ionique. Le greffage est réalisé par polymérisation contrôlée par transfert d’atome (ATRP) initiée depuis la surface de mica afin de contrôler la croissance du polymère et sa densité de greffage. L’étude de la conformation des brosses de PtBA et de PAA a été menée avec la technique AFM en mesurant les épaisseurs des films à sec et gonflés sous différentes conditions de solvant, de pH et de force ionique. Une monocouche d’amorceurs est tout d’abord greffée sur du mica porteur de groupes hydroxyles créés par plasma (Ar/H2O). Cette couche a été caractérisée par des mesures d’angle de contact et par la technique TOF-SIMS. L’amorceur greffé a ensuite permis d’initier l’ATRP directement depuis la surface pour former des brosses neutres de PtBA liés de façon covalente au mica. La croissance linéaire de l’épaisseur du film avec la masse molaire du polymère en solution et le taux de conversion montre que la polymérisation est contrôlée. De plus, la ré-initiation des chaînes greffées atteste du caractère vivant de la polymérisation. L’hydrolyse des brosses de PtBA, confirmée par des mesures d’angle de contact, d’épaisseur et par FT-IR, conduit à des brosses de PAA. Les différentes couches greffées sont stables à l’air, en milieu organique et en milieu aqueux et leur gonflement est réversible. Le degreffage de la couche de PAA est observé suite à une longue exposition à pH basique. Cette étude représente le premier exemple de brosses greffées chimiquement sur du mica par polymérisation initiée depuis la surface. La variation des paramètres de la réaction de greffage de l’amorceur, tels que la concentration et la durée de réaction, a permis de contrôler le taux de recouvrement de l’amorceur et la densité de greffage du polymère. Une grande gamme de taux de recouvrement de l’amorceur est accessible et se traduit par un intervalle de densités de greffage allant de faibles à élevées (e.g. 0,04 chaîne/nm2 à 0,5 chaîne/nm2). L’étude de la conformation des chaînes de PtBA dans le DMF montre que cet intervalle de densités recouvre le régime crêpe au régime brosse. Le gonflement de brosses de PAA et la variation de la hauteur de la brosse L ont été étudiés en fonction de la densité de greffage, du pH et du sel ajouté cs (NaCl). Une transition brusque de collapsée à étirée est observée avec l’augmentation du pH, indépendamment de la densité de greffage. A pH neutre, les brosses sont collapsées et se comportent comme des brosses neutres en mauvais solvant. A pH basique, les brosses sont gonflées et chargées et se trouvent dans un régime de Pincus caractéristique des polyélectrolytes forts. En présence de sel, les charges sont partiellement écrantées et les répulsions électrostatiques dominent toujours dans la brosse. Cette étude contribue à une meilleure compréhension du comportement complexe des brosses de polyélectrolytes faibles et apporte un soutien expérimental à la théorie sur le comportement de ces brosses.
Resumo:
La spectroscopie infrarouge à matrice à plan focal (PAIRS) est utilisée pour étudier la déformation et la relaxation des polymères à très haute vitesse, soit de 46 cm/s, grâce à sa résolution temporelle de quelques millisecondes. Des mesures complémentaires de spectroscopie infrarouge d’absorbance structurale par modulation de la polarisation (PM-IRSAS) ont été réalisées pour suivre des déformations plus lentes de 0,16 à 1,6 cm/s avec une résolution temporelle de quelques centaines de millisecondes. Notre étude a permis d’observer, à haute vitesse de déformation, un nouveau temps de relaxation (τ0) de l’ordre d’une dizaine de millisecondes qui n’est pas prédit dans la littérature. Le but de cette étude est de quantifier ce nouveau temps de relaxation ainsi que de déterminer les effets de la température, de la masse molaire et de la composition du mélange sur ce dernier. Des mesures effectuées sur du polystyrène (PS) de deux masses molaires différentes, soit 210 et 900 kg/mol, à diverses températures ont révélé que ce temps est indépendant de la masse molaire mais qu’il varie avec la température. Des mesures effectuées sur des films composés de PS900 et de PS deutéré de 21 kg/mol, ont révélé que ce temps ne dépend pas de la composition du mélange et que la longueur des chaînes de PS n’a aucun impact sur celui-ci. D’autres mesures effectuées sur des films de PS900 mélangé avec le poly(vinyl méthyl éther) (PVME) ont révélé que ce temps est identique pour le PS900 pur et le PS900 dans le mélange, mais qu’il est plus court pour le PVME, de l’ordre de quelques millisecondes.
Resumo:
Poly(ethylene terephthalate) (PET) based nanocomposites have been prepared with single walled carbon nanotubes (SWNTs) through an ultrasound assisted dissolution-evaporation method. Differential scanning calorimetry studies showed that SWNTs nucleate crystallization in PET at weight fractions as low as 0.3%, as the nanocomposite melt crystallized during cooling at temperature 24 °C higher than neat PET of identical molecular weight. Isothermal crystallization studies also revealed that SWNTs significantly accelerate the crystallization process. Mechanical properties of the PETSWNT nanocomposites improved as compared to neat PET indicating the effective reinforcement provided by nanotubes in the polymer matrix. Electrical conductivity measurements on the nanocomposite films showed that SWNTs at concentrations exceeding 1 wt% in the PET matrix result in electrical percolation. Comparison of crystallization, conductivity and transmission electron microscopy studies revealed that ultrasound assisted dissolution-evaporation method enables more effective dispersion of SWNTs in the PET matrix as compared to the melt compounding method