994 resultados para Long Pulsed Laser


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Incorporation of carbon nanostructures in metals is desirable to combine the strongly bonded electrons in the metal and the free electrons in carbon nanostructures that give rise to high ampacity and high conductivity, respectively. Carbon in copper has the potential to impact industries such as: building construction, power generation and transmission, and microelectronics. This thesis focuses on the structure and properties of bulk and thin films of a new material, Cu covetic, that contains carbon in concentrations up to 16 at.%. X-ray photoelectron spectroscopy (XPS) shows C 1s peak with both sp2 and sp3 bonded C measuring up to 3.5 wt.% (16 at.%). High resolution transmission electron microscopy and electron diffraction of bulk covetic samples show a modulated structure of ≈ 1.6 nm along several crystallographic directions in regions that have high C content suggesting that the carbon incorporates into the copper lattice forming a network. Electron energy loss spectra (EELS) from covetics reveal that the level of graphitization from the source material, activated carbon, is maintained in the covetic structure. Bulk Cu covetics have a slight increase in the lattice constant, as well as <111> texturing, or possibly a different structure, compared to pure Cu. Density functional theory calculations predict bonding between C and Cu at the edges and defects of graphene sheets. The electrical resistivity of bulk covetics first increases and then decreases with increasing C content. Cu covetic films were deposited using e-beam and pulsed laser deposition (PLD) at different temperatures. No copper oxide or any allotropes of carbon are present in the films. The e-beam films show enhanced electrical and optical properties when compared to pure Cu films of the same thickness even though no carbon was detected by XPS or EELS. They also have slightly higher ampacity than Cu metal films. EELS analysis of the C-K-edge in the PLD films indicate that graphitic carbon is transferred from the bulk into the films with uniform carbon distribution. PLD films exhibit flatter and higher transmittance curves and sheet resistance two orders of magnitude lower than e-beam films leading to a high figure of merit as transparent conductors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wydział Fizyki

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Silicon samples were implanted with high Ti doses and subsequently processed with the pulsed-laser melting technique. The electronic transport properties in the 15–300 K range and the room temperature spectral photoresponse at energies over the bandgap were measured. Samples with Ti concentration below the insulator-metal (I-M) transition limit showed a progressive reduction of the carrier lifetime in the implanted layer as Ti dose is increased. However, when the Ti concentration exceeded this limit, an extraordinary recovery of the photoresponse was measured. This result supports the theory of intermediate band materials and is of utmost relevance for photovoltaic cells and Si-based detectors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report the observation of the insulator-to-metal transition in crystalline silicon samples supersaturated with vanadium. Ion implantation followed by pulsed laser melting and rapid resolidification produce high quality single-crystalline silicon samples with vanadium concentrations that exceed equilibrium values in more than 5 orders of magnitude. Temperature-dependent analysis of the conductivity and Hall mobility values for temperatures from 10K to 300K indicate that a transition from an insulating to a metallic phase is obtained at a vanadium concentration between 1.1 × 10^(20) and 1.3 × 10^(21) cm^(−3) . Samples in the insulating phase present a variable-range hopping transport mechanism with a Coulomb gap at the Fermi energy level. Electron wave function localization length increases from 61 to 82 nm as the vanadium concentration increases in the films, supporting the theory of impurity band merging from delocalization of levels states. On the metallic phase, electronic transport present a dispersion mechanism related with the Kondo effect, suggesting the presence of local magnetic moments in the vanadium supersaturated silicon material.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis explores the potential of chiral plasmonic nanostructures for the ultrasensitive detection of protein structure. These nanostructures support the generation of fields with enhanced chirality relative to circularly polarised light and are an extremely incisive probe of protein structure. In chapter 4 we introduce a nanopatterned Au film (Templated Plasmonic Substrate, TPS) fabricated using a high through-put injection moulding technique which is a viable alternative to expensive lithographically fabricated nanostructures. The optical and chiroptical properties of TPS nanostructures are found to be highly dependent on the coupling between the electric and magnetic modes of the constituent solid and inverse structures. Significantly, refractive index based measurements of strongly coupled TPSs display a similar sensitivity to protein structure as previous lithographic nanostructures. We subsequently endeavour to improve the sensing properties of TPS nanostructures by developing a high through-put nanoscale chemical functionalisation technique. This process involves a chemical protection/deprotection strategy. The protection step generates a self-assembled monolayer (SAM) of a thermally responsive polymer on the TPS surface which inhibits protein binding. The deprotection step exploits the presence of nanolocalised thermal gradients in the water surrounding the TPS upon irradiation with an 8ns pulsed laser to modify the SAM conformation on surfaces with high net chirality. This allows binding of biomaterial in these regions and subsequently enhances the TPS sensitivity levels. In chapter 6 an alternative method for the detection of protein structure using TPS nanostructures is introduced. This technique relies on mediation of the electric/magnetic coupling in the TPS by the adsorbed protein. This phenomenon is probed through both linear reflectance and nonlinear second harmonic generation (SHG) measurements. Detection of protein structure using this method does not require the presence of fields of enhanced chirality whilst it is also sensitive to a larger array of secondary structure motifs than the measurements in chapters 4 and 5. Finally, a preliminary investigation into the detection of mesoscale biological structure is presented. Sensitivity to the mesoscale helical pitch of insulin amyloid fibrils is displayed through the asymmetry in the circular dichroism (CD) of lithographic gammadions of varying thickness upon adsorption of insulin amyloid fibril spherulites and fragmented fibrils. The proposed model for this sensitivity to the helical pitch relies on the vertical height of the nanostructures relative to this structural property as well as the binding orientation of the fibrils.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We propose the design of a novel ?-shaped fiber laser resonator and apply it to build a long-cavity normaldispersion mode-locked Er-fiber laser which features enhanced functionalities for management and optimization of pulsed lasing regimes. We report the generation of sub-nanosecond pulses with the energy of ~0.5 µJ at a kilohertz-scale repetition rate in an all-fiber system based on the new laser design. A combination of special design solutions in the laser, such as polarization instability compensation in the ultra-long arm of the resonator, intra-cavity spectral selection of radiation with a broadband fiber Bragg grating, and polarization selection by means of a tilted refractive index grating, ensures low amplified spontaneous emission (ASE) noise and high stability of the laser system output parameters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We propose the design of a novel ?-shaped fiber laser resonator and apply it to build a long-cavity normaldispersion mode-locked Er-fiber laser which features enhanced functionalities for management and optimization of pulsed lasing regimes. We report the generation of sub-nanosecond pulses with the energy of ~0.5 µJ at a kilohertz-scale repetition rate in an all-fiber system based on the new laser design. A combination of special design solutions in the laser, such as polarization instability compensation in the ultra-long arm of the resonator, intra-cavity spectral selection of radiation with a broadband fiber Bragg grating, and polarization selection by means of a tilted refractive index grating, ensures low amplified spontaneous emission (ASE) noise and high stability of the laser system output parameters.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

BACKGROUND In experimental animal studies, pulsing the CO2 laser beam has been shown to reduce the thermal damage zone of excised oral mucosal tissue. However, there is still controversy over whether this is borne out under clinical conditions. OBJECTIVE To compare the outcome following excisional biopsies of fibrous hyperplasias using a pulsed (cf) versus a continuous wave (cw) CO2 laser mode regarding the thermal damage zone, duration of surgeries, intra- and postoperative complications, postoperative pain sensation, scarring and/or relapse during the initial 6 months. MATERIALS AND METHODS One hundred Swiss-resident patients with a fibrous hyperplasia in their buccal mucosa were randomly assigned to the cw mode (5 W) or the cf mode (140 Hz, 400 microseconds, 33 mJ, 4.62 W) group. All excisions were performed by one single oral surgeon. Postoperative pain (2 weeks) was recorded by visual analogue scale (VAS; ranging from 0 to 100). Intake of analgesics and postoperative complications were recorded in a standardized study form. The maximum width of the collateral thermal damage zone was measured (µm) in excision specimens by one pathologist. Intraoral photographs at 6-month follow-up examinations were evaluated regarding scarring (yes/no). RESULTS Median duration of the excision was 65 seconds in the cw and 81 seconds in the cf group (P = 0.13). Intraoperative bleeding occurred in 16.3% of the patients in the cw and 17.7% of the cf group. The median value of the thermal damage zone was 161(±228) μm in the cw and 152(± 105) μm in the cf group (P = 0.68). The reported postoperative complications included swelling in 19% and minor bleeding in 6% without significant differences between the two laser modes. When comparing each day separately or the combined mean VAS scores of both groups between Days 1-3, 1-7, and 1-15, there were no significant differences. However, more patients of the cw group (25%) took analgesics than patients of the cf group (9.8%) resulting in a borderline significance (P = 0.04). Scarring at the excision site was found in 50.6% of 77 patients after 6 months, and more scars were identified in cases treated with the cf mode (P = 0.03). CONCLUSIONS Excision of fibrous hyperplasias performed with a CO2 laser demonstrated a good clinical outcome and long-term predictability with a low risk of recurrence regardless of the laser mode (cf or cw) used. Scarring after 6 months was only seen in 50.6% of the cases and was slightly more frequent in the cf mode group. Based on the findings of the present study, a safety border of 1 mm appears sufficient for both laser modes especially when performing a biopsy of a suspicious soft tissue lesion to ensure a proper histopathological examination.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Cascade transitions of rare earth ions involved in infrared host fiber provide the potential to generate dual or multiple wavelength lasing at mid-infrared region. In addition, the fast development of saturable absorber (SA) towards the long wavelengths motivates the realization of passively switched mid-infrared pulsed lasers. In this work, by combing the above two techniques, a new phenomenon of passively Q-switched ~3 μm and gain-switched ~2 μm pulses in a shared cavity was demonstrated with a Ho3+-doped fluoride fiber and a specifically designed semiconductor saturable absorber (SESAM) as the SA. The repetition rate of ~2 μm pulses can be tuned between half and same as that of ~3 μm pulses by changing the pump power. The proposed method here will add new capabilities and more flexibility for generating mid-infrared multiple wavelength pulses simultaneously that has important potential applications for laser surgery, material processing, laser radar, and free-space communications, and other areas.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objective of this study was to evaluate in vitro light activation of the nano-filled resin composite Vita shade A1 and A3 with a halogen lamp (QTH) and argon ion laser by Knoop microhardness profile. Materials and methods: Specimens of nanofilled composite resin (Z350-3 M-ESPE) Vita shade A1 and A3 were prepared with a single increment inserted in 2.0-mm-thick and 3-mm diameter disc-shaped Teflon mold. The light activation was performed with QTH for 20 s (with an intensity of approximately 1,000 mW/cm(2) and 700 mW/cm(2)) and argon ion laser for 10 s (with a power of 150 mW and 200 mW). Knoop microhardness test was performed after 24 h and 6 months. The specimens were divided into the 16 experimental groups (n = 10), according to the factors under study: photoactivation form, resin shade, and storage time. Knoop microhardness data was analyzed by a factorial ANOVA and TukeyA ` s tests at the 0.05 level of significance. Results: Argon ion laser was not able to photo-activate the darker shade of the nanofilled resin composite evaluated but when used with 200 mW it can be as effective as QTH to photo-activate the lighter shade with only 50% of the time exposure. After 6 months storage, an increase in the means of Knoop microhardness values were observed. Conclusions: Light-activation significantly influenced the Knoop microhardness values for the darker nanofilled resin composite.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Herpes simplex virus types 1 and 2 are the main infectious agents associated with oral and genital ulcerations. These infections are now widely recognized as sexually transmitted diseases. Among treatment options, low-level laser therapy (LLLT) has shown promising clinical results as a longer-lasting suppression therapy. Two clinical cases are described with recurrent labial herpes for which LLLT was used. Following treatment, both patients remained symptom free during the 17-month clinical follow-up period.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJETIVE: With the increased use of intracoronary stents, in-stent restenosis has become a clinically significant drawback in invasive cardiology. We retrospectively assessed the short- and long-term outcomes after excimer laser coronary angioplasty of in-stent restenosis. METHODS: Twenty-five patients with 33 incidents of in-stent restenosis treated with excimer laser coronary angioplasty (ELCA) were analyzed. Sixty-six percent were males, mean age of 73±11 years, and 83% were functional class III-IV (NYHA). ELCA was performed using 23 concentric and 10 eccentric catheters with a diameter of 1.6-2.2 mm, followed by balloon angioplasty (PTCA) and ultrasound monitoring. The procedure was performed in the following vessels: left anterior descending artery, 10; left circumflex artery, 8; right coronary artery, 6; left main coronary artery, 2; and venous bypass graft, 7. RESULTS: The ELCA was successful in 71% of the cases, and PTCA was 100% successful. The diameter of the treated vessels was 3.44±0.5mm; the minimal luminal diameter (MLD) increased from 0.30mm pre-ECLA to 1.97mm post-ELCA, and to 2.94mm post-PTCA (p<0.001). The percent stenosis was reduced from 91.4±9.5% before ECLA to 42.3±14.9% after ELCA and to 14.6 ± 9.3% after PTCA (p<0.001). Seventeen (68%) patients were asymptomatic at 6 months and 15 (60%) at 1 year. New restenosis rates were 8/33 (24.2%) at 6 months and 9 /33 (27.3%) at 12 months. CONCLUSION: ELCA is safe and effective for the treatment of in-stent restenosis. In the present sample, a slight increase in new restenotic lesions between 6 and 12 months was found.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pulsed-field gel electrophoresis (PFGE) is widely used for epidemic investigations of methicillin-resistant Staphylococcus aureus (MRSA). In the present study, we evaluated its use in a long-term epidemiological setting (years to few decades, country to continent level). The clustering obtained from PFGE patterns after SmaI digestion of the DNA of 20 strains was compared to that obtained using a phylogenetic typing method (multiprimer RAPD). The results showed that the analysis of small PFGE bands (10-85kb) correlates better with multiprimer RAPD than the analysis of large PFGE bands (>85-700kb), suggesting that the analysis of small bands would be more suitable for the investigation of long-term epidemiological setting. However, given the technical difficulties to obtain a good resolution of these bands and the putative presence of plasmids among them, PFGE does not appear to be a method of choice for the long-term epidemiology analysis of MRSA.