973 resultados para Logarithmic conformal field theory
Resumo:
It is proven that the pure spinor superstring in an AdS5 × S5 background remains conformally invariant at one loop level in the sigma model perturbation theory. © SISSA/ISAS 2003.
Resumo:
It is shown that the pure spinor formulation of the heterotic superstring in a generic gravitational and super Yang-Mills background has vanishing one-loop beta functions. © SISSA/ISAS 2004.
Resumo:
We compute the one-loop beta functions for the Type II superstring using the pure spinor formalism in a generic supergravity background. It is known that the classical pure spinor BRST symmetry puts the background fields on-shell. In this paper we show that the one-loop beta functions vanish as a consequence of the classical BRST symmetry of the action. © SISSA 2007.
Resumo:
We use Hirota's method formulated as a recursive scheme to construct a complete set of soliton solutions for the affine Toda field theory based on an arbitrary Lie algebra. Our solutions include a new class of solitons connected with two different types of degeneracies encountered in Hirota's perturbation approach. We also derive an universal mass formula for all Hirota's solutions to the affine Toda model valid for all underlying Lie groups. Embedding of the affine Toda model in the conformal affine Toda model plays a crucial role in this analysis.
Resumo:
We consider the Schrödinger equation for a relativistic point particle in an external one-dimensional δ-function potential. Using dimensional regularization, we investigate both bound and scattering states, and we obtain results that are consistent with the abstract mathematical theory of self-adjoint extensions of the pseudodifferential operator H=p2+m2−−−−−−−√. Interestingly, this relatively simple system is asymptotically free. In the massless limit, it undergoes dimensional transmutation and it possesses an infrared conformal fixed point. Thus it can be used to illustrate nontrivial concepts of quantum field theory in the simpler framework of relativistic quantum mechanics.
Resumo:
A major problem in modern probabilistic modeling is the huge computational complexity involved in typical calculations with multivariate probability distributions when the number of random variables is large. Because exact computations are infeasible in such cases and Monte Carlo sampling techniques may reach their limits, there is a need for methods that allow for efficient approximate computations. One of the simplest approximations is based on the mean field method, which has a long history in statistical physics. The method is widely used, particularly in the growing field of graphical models. Researchers from disciplines such as statistical physics, computer science, and mathematical statistics are studying ways to improve this and related methods and are exploring novel application areas. Leading approaches include the variational approach, which goes beyond factorizable distributions to achieve systematic improvements; the TAP (Thouless-Anderson-Palmer) approach, which incorporates correlations by including effective reaction terms in the mean field theory; and the more general methods of graphical models. Bringing together ideas and techniques from these diverse disciplines, this book covers the theoretical foundations of advanced mean field methods, explores the relation between the different approaches, examines the quality of the approximation obtained, and demonstrates their application to various areas of probabilistic modeling.
Resumo:
We use the boundary effective theory approach to thermal field theory in order to calculate the pressure of a system of massless scalar fields with quartic interaction. The method naturally separates the infrared physics, and is essentially nonperturbative. To lowest order, the main ingredient is the solution of the free Euler-Lagrange equation with nontrivial (time) boundary conditions. We derive a resummed pressure, which is in good agreement with recent calculations found in the literature, following a very direct and compact procedure.
Resumo:
We consider a model of classical noncommutative particle in an external electromagnetic field. For this model, we prove the existence of generalized gauge transformations. Classical dynamics in Hamiltonian and Lagrangian form is discussed; in particular, the motion in the constant magnetic field is studied in detail. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3299296]
Resumo:
We study a class of lattice field theories in two dimensions that includes gauge theories. We show that in these theories it is possible to implement a broader notion of local symmetry, based on semisimple Hopf algebras. A character expansion is developed for the quasitopological field theories, and partition functions are calculated with this tool. Expected values of generalized Wilson loops are defined and studied with the character expansion.
Resumo:
A new class of bilinear permutation polynomials was recently identified. In this note we determine the class of permutation polynomials which represents the functional inverse of the bilinear class.
Resumo:
We discuss theoretical and phenomenological aspects of two-Higgs-doublet extensions of the Standard Model. In general, these extensions have scalar mediated flavour changing neutral currents which are strongly constrained by experiment. Various strategies are discussed to control these flavour changing scalar currents and their phenomenological consequences are analysed. In particular, scenarios with natural flavour conservation are investigated, including the so-called type I and type II models as well as lepton-specific and inert models. Type III models are then discussed, where scalar flavour changing neutral currents are present at tree level, but are suppressed by either a specific ansatz for the Yukawa couplings or by the introduction of family symmetries leading to a natural suppression mechanism. We also consider the phenomenology of charged scalars in these models. Next we turn to the role of symmetries in the scalar sector. We discuss the six symmetry-constrained scalar potentials and their extension into the fermion sector. The vacuum structure of the scalar potential is analysed, including a study of the vacuum stability conditions on the potential and the renormalization-group improvement of these conditions is also presented. The stability of the tree level minimum of the scalar potential in connection with electric charge conservation and its behaviour under CP is analysed. The question of CP violation is addressed in detail, including the cases of explicit CP violation and spontaneous CP violation. We present a detailed study of weak basis invariants which are odd under CP. These invariants allow for the possibility of studying the CP properties of any two-Higgs-doublet model in an arbitrary Higgs basis. A careful study of spontaneous CP violation is presented, including an analysis of the conditions which have to be satisfied in order for a vacuum to violate CP. We present minimal models of CP violation where the vacuum phase is sufficient to generate a complex CKM matrix, which is at present a requirement for any realistic model of spontaneous CP violation.
Constraint algorithm for k-presymplectic Hamiltonian systems. Application to singular field theories
Resumo:
The k-symplectic formulation of field theories is especially simple, since only tangent and cotangent bundles are needed in its description. Its defining elements show a close relationship with those in the symplectic formulation of mechanics. It will be shown that this relationship also stands in the presymplectic case. In a natural way,one can mimick the presymplectic constraint algorithm to obtain a constraint algorithmthat can be applied to k-presymplectic field theory, and more particularly to the Lagrangian and Hamiltonian formulations offield theories defined by a singular Lagrangian, as well as to the unified Lagrangian-Hamiltonian formalism (Skinner--Rusk formalism) for k-presymplectic field theory. Two examples of application of the algorithm are also analyzed.
Resumo:
An implicitly parallel method for integral-block driven restricted active space self-consistent field (RASSCF) algorithms is presented. The approach is based on a model space representation of the RAS active orbitals with an efficient expansion of the model subspaces. The applicability of the method is demonstrated with a RASSCF investigation of the first two excited states of indole
Resumo:
The aim of this paper is to give an explicit formula for the num- bers of abelian extensions of a p-adic number field and to study the generating function of these numbers. More precisely, we give the number of abelian ex- tensions with given degree and ramification index, and the number of abelian extensions with given degree of any local field of characteristic zero. Moreover, we give a concrete expression of a generating function for these last numbers
Resumo:
We investigate the influence of the driving mechanism on the hysteretic response of systems with athermal dynamics. In the framework of local mean-field theory at finite temperature (but neglecting thermally activated processes), we compare the rate-independent hysteresis loops obtained in the random field Ising model when controlling either the external magnetic field H or the extensive magnetization M. Two distinct behaviors are observed, depending on disorder strength. At large disorder, the H-driven and M-driven protocols yield identical hysteresis loops in the thermodynamic limit. At low disorder, when the H-driven magnetization curve is discontinuous (due to the presence of a macroscopic avalanche), the M-driven loop is reentrant while the induced field exhibits strong intermittent fluctuations and is only weakly self-averaging. The relevance of these results to the experimental observations in ferromagnetic materials, shape memory alloys, and other disordered systems is discussed.