918 resultados para Localised, microneedles, Ocular, Drug Delivery, Macromolecule


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The properties of hydrogels, in particular their high biocompatibility and water sorption uptake, make hydrogels very attractive in drug delivery and biomedical devices. These favorable features of hydrogels are compromised by certain structural limitations such as those associated with their low mechanical strength in the swollen state. This review highlights the most important challenges that may seriously affect the practical implementation of hydrogels in clinical practice and the solutions that may be applied to overcome these limitations. © 2012 Future Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose. The pH-dependent physicochemical properties of the antimicrobial quinolone, nalidixic acid, were exploited to achieve ‘intelligent’ drug release from a potential urinary catheter coating, poly(2-hydroxyethylmethacrylate) (p(HEMA)), in direct response to the elevated pH which occurs at the onset of catheter infection.
Methods. p(HEMA) hydrogels, and reduced-hydrophilicity copolymers incorporating methyl methacrylate, were loaded with nalidixic acid by a novel, surface particulate localization method, and characterized in terms of pH-dependent drug release and microbiological activity against the common urease-producing urinary pathogen Proteus mirabilis.
Results. The pH-dependent release kinetics of surface-localized nalidixic acid were 50- and 10-fold faster at pH 9, representing the alkaline conditions induced by urease-producing urinary pathogens, compared to release at pH 5 and pH 7 respectively. Furthermore, microbiological activity against P. mirabilis was significantly enhanced after loading surface particulate nalidixic acid in comparison to p(HEMA) hydrogels conventionally loaded with dispersed drug. The more hydrophobic methyl methacrylate-containing copolymers also demonstrated this pH responsive behavior, but additionally exhibited a sustained period of zero-order release.
Conclusions. The paradigm presented here provides a system with latent, immediate infection-responsive drug release followed by prolonged zero-order antimicrobial delivery, and represents an ‘intelligent’, infection-responsive, self-sterilizing biomaterial.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(vinyl alcohol)-tetrahydroxyborate (PVA-THB) hydrogels are dilatant formulations with potential for topical wound management. To support this contention, the physical properties, rheological behaviour and component release of candidate formulations were investigated. Oscillatory rheometry and texture profile analysis were used at room temperature and 37 °C. Results showed that it was possible to control the rheological and textural properties by altering component concentration and modifying the type of PVA polymer used. Hydrogels made using PVA grades with higher degrees of hydrolysis displayed favourable characteristics from a wound healing perspective. In vitro release of borate and PVA were assessed in order to evaluate potential clinical dosing of free species originating from the hydrogel structure. Component diffusion was influenced by both concentration and molecular weight, where relevant, with up to 5% free PVA cumulative release observed after 30 min. The results of this study demonstrated the importance of poly(vinyl alcohol) selection for ensuring appropriate gel formation in PVA-THB hydrogels. The benefits of higher degrees of hydrolysis, in particular, included lower excipient release and reduced bioadhesion. The unique physical characteristics of these hydrogels make them an appealing delivery vehicle for chronic and acute wound management purposes.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

No bioadhesive patch-based system is currently marketed. This is despite an extensive number of literature reports on such systems detailing their advantages over conventional pressure sensitive adhesive-based patches in wet environments and describing successful delivery of a diverse array of drug substances. This lack of proprietary bioadhesive patches is largely due to the fact that such systems are exclusively water-based, meaning drying is difficult. In this paper we describe, for the first time, a novel multiple lamination method for production of bioadhesive patches. In contrast to patches produced using a conventional casting approach, which took 48 hours to dry, bioadhesive films prepared using the novel multiple lamination method were dried in 15?min and were folded into formed patches in a further 10?min. Patches prepared by both methods had comparable physicochemical properties. The multiple lamination method allowed supersaturation of 5-aminolevulinic acid to be achieved in formed patch matrices. However, drug release studies were unable to show an advantage for supersaturation with this particular drug, due to its water high solubility. The multiple lamination method allowed greater than 90% of incorporated nicotine to remain within formed patches, in contrast to the 48% achieved for patches prepared using a conventional casting approach. The procedure described here could readily be adapted for automation by industry. Due to the reduced time, energy and ensuing finance now required, this could lead to bioadhesive patch-based drug delivery systems becoming commercially viable. This would, in turn, mean that pathological conditions occurring in wet or moist areas of the body could now be routinely treated by prolonged site-specific drug delivery, as mediated by a commercially produced bioadhesive patch.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In situ forming (ISF) drug delivery implants have gained tremendous levels of interest over the last few decades. This is due to their wide range of biomedical applications such as in tissue engineering, cell encapsulation, microfluidics, bioengineering and drug delivery. Drug delivery implants forming upon injection has shown a range of advantages which include localized drug delivery, easy and less invasive application, sustained drug action, ability to tailor drug delivery, reduction in side effects associated with systemic delivery and also improved patient compliance and comfort. Different factors such as temperature, pH, ions, and exchange of solvents are involved in in situ implant formation. This review especially focuses on ISF implants that are formed through solvent induced phase inversion (SPI) technique. The article critically reviews and compares a wide range of polymers, solvents, and co-solvents that have been used in SPI implant preparation for control release of a range of drug molecules. Major drawback of SPI systems has been their high burst release. In this regard, the article exhaustively discusses factors that affect the burst release and different modification strategies that has been utilised to reduce the burst effect from these implants. Performance and controversial issues associated with the use of different biocompatible solvents in SPI systems is also discussed. Biodegradation, formulation stability, methods of characterisation and sterilisation techniques of SPI systems is comprehensively reviewed. Furthermore, the review also examines current SPI-based marketed products, their therapeutic application and associated clinical data. It also exemplifies the interest of multi-billion dollar pharma companies worldwide for further developments of SPI systems to a range of therapeutic applications. The authors believe that this will be the first review article that extensively investigate and discusses studies done to date on SPI systems. In so doing, this article will undoubtedly serve as an enlightening tool for the scientists working in the concerned area.