964 resultados para Load model
Resumo:
ABSTRACT (italiano) Con crescente attenzione riguardo al problema della sicurezza di ponti e viadotti esistenti nei Paesi Bassi, lo scopo della presente tesi è quello di studiare, mediante la modellazione con Elementi Finiti ed il continuo confronto con risultati sperimentali, la risposta in esercizio di elementi che compongono infrastrutture del genere, ovvero lastre in calcestruzzo armato sollecitate da carichi concentrati. Tali elementi sono caratterizzati da un comportamento ed una crisi per taglio, la cui modellazione è, da un punto di vista computazionale, una sfida piuttosto ardua, a causa del loro comportamento fragile combinato a vari effetti tridimensionali. La tesi è incentrata sull'utilizzo della Sequentially Linear Analysis (SLA), un metodo di soluzione agli Elementi Finiti alternativo rispetto ai classici approcci incrementali e iterativi. Il vantaggio della SLA è quello di evitare i ben noti problemi di convergenza tipici delle analisi non lineari, specificando direttamente l'incremento di danno sull'elemento finito, attraverso la riduzione di rigidezze e resistenze nel particolare elemento finito, invece dell'incremento di carico o di spostamento. Il confronto tra i risultati di due prove di laboratorio su lastre in calcestruzzo armato e quelli della SLA ha dimostrato in entrambi i casi la robustezza del metodo, in termini di accuratezza dei diagrammi carico-spostamento, di distribuzione di tensioni e deformazioni e di rappresentazione del quadro fessurativo e dei meccanismi di crisi per taglio. Diverse variazioni dei più importanti parametri del modello sono state eseguite, evidenziando la forte incidenza sulle soluzioni dell'energia di frattura e del modello scelto per la riduzione del modulo elastico trasversale. Infine è stato effettuato un paragone tra la SLA ed il metodo non lineare di Newton-Raphson, il quale mostra la maggiore affidabilità della SLA nella valutazione di carichi e spostamenti ultimi insieme ad una significativa riduzione dei tempi computazionali. ABSTRACT (english) With increasing attention to the assessment of safety in existing dutch bridges and viaducts, the aim of the present thesis is to study, through the Finite Element modeling method and the continuous comparison with experimental results, the real response of elements that compose these infrastructures, i.e. reinforced concrete slabs subjected to concentrated loads. These elements are characterized by shear behavior and crisis, whose modeling is, from a computational point of view, a hard challenge, due to their brittle behavior combined with various 3D effects. The thesis is focused on the use of Sequentially Linear Analysis (SLA), an alternative solution technique to classical non linear Finite Element analyses that are based on incremental and iterative approaches. The advantage of SLA is to avoid the well-known convergence problems of non linear analyses by directly specifying a damage increment, in terms of a reduction of stiffness and strength in the particular finite element, instead of a load or displacement increment. The comparison between the results of two laboratory tests on reinforced concrete slabs and those obtained by SLA has shown in both the cases the robustness of the method, in terms of accuracy of load-displacements diagrams, of the distribution of stress and strain and of the representation of the cracking pattern and of the shear failure mechanisms. Different variations of the most important parameters have been performed, pointing out the strong incidence on the solutions of the fracture energy and of the chosen shear retention model. At last a confrontation between SLA and the non linear Newton-Raphson method has been executed, showing the better reliability of the SLA in the evaluation of the ultimate loads and displacements, together with a significant reduction of computational times.
Resumo:
English: The assessment of safety in existing bridges and viaducts led the Ministry of Public Works of the Netherlands to finance a specific campaing aimed at the study of the response of the elements of these infrastructures. Therefore, this activity is focused on the investigation of the behaviour of reinforced concrete slabs under concentrated loads, adopting finite element modeling and comparison with experimental results. These elements are characterized by shear behaviour and crisi, whose modeling is, from a computational point of view, a hard challeng, due to the brittle behavior combined with three-dimensional effects. The numerical modeling of the failure is studied through Sequentially Linear Analysis (SLA), an alternative Finite Element method, with respect to traditional incremental and iterative approaches. The comparison between the two different numerical techniques represents one of the first works and comparisons in a three-dimensional environment. It's carried out adopting one of the experimental test executed on reinforced concrete slabs as well. The advantage of the SLA is to avoid the well known problems of convergence of typical non-linear analysis, by directly specifying a damage increment, in terms of reduction of stiffness and resistance in particular finite element, instead of load or displacement increasing on the whole structure . For the first time, particular attention has been paid to specific aspects of the slabs, like an accurate constraints modeling and sensitivity of the solution with respect to the mesh density. This detailed analysis with respect to the main parameters proofed a strong influence of the tensile fracture energy, mesh density and chosen model on the solution in terms of force-displacement diagram, distribution of the crack patterns and shear failure mode. The SLA showed a great potential, but it requires a further developments for what regards two aspects of modeling: load conditions (constant and proportional loads) and softening behaviour of brittle materials (like concrete) in the three-dimensional field, in order to widen its horizons in these new contexts of study.
Resumo:
Constant developments in the field of offshore wind energy have increased the range of water depths at which wind farms are planned to be installed. Therefore, in addition to monopile support structures suitable in shallow waters (up to 30 m), different types of support structures, able to withstand severe sea conditions at the greater water depths, have been developed. For water depths above 30 m, the jacket is one of the preferred support types. Jacket represents a lightweight support structure, which, in combination with complex nature of environmental loads, is prone to highly dynamic behavior. As a consequence, high stresses with great variability in time can be observed in all structural members. The highest concentration of stresses occurs in joints due to their nature (structural discontinuities) and due to the existence of notches along the welds present in the joints. This makes them the weakest elements of the jacket in terms of fatigue. In the numerical modeling of jackets for offshore wind turbines, a reduction of local stresses at the chord-brace joints, and consequently an optimization of the model, can be achieved by implementing joint flexibility in the chord-brace joints. Therefore, in this work, the influence of joint flexibility on the fatigue damage in chord-brace joints of a numerical jacket model, subjected to advanced load simulations, is studied.
Resumo:
Bone is continually being removed and replaced through the actions of basic multicellular units (BMU). This constant upkeep is necessary to remove microdamage formed naturally due to fatigue and thus maintain the integrity of the bone. The repair process in bone is targeted, meaning that a BMU travels directly to the site of damage and repairs it. It is still unclear how targeted remodelling is stimulated and directed but it is highly likely that osteocytes play a role. A number of theories have been advanced to explain the microcrack osteocyte interaction but no complete mechanism has been demonstrated. Osteocytes are connected to each other by dendritic processes. The “scissors model" proposed that the rupture of these processes where they cross microcracks signals the degree of damage and the urgency of the necessary repair. In its original form it was proposed that under applied compressive loading, microcrack faces will be pressed together and undergo relative shear movement. If this movement is greater than the width of an osteocyte process, then the process will be cut in a “scissors like" motion, releasing RANKL, a cytokine known to be essential in the formation of osteoclasts from pre-osteoclasts. The main aim of this thesis was to investigate this theoretical model with a specific focus on microscopy and finite element modelling. Previous studies had proved that cyclic stress was necessary for osteocyte process rupture to occur. This was a divergence from the original “scissors model" which had proposed that the cutting of cell material occurred in one single action. The present thesis is the first study to show fatigue failure in cellular processes spanning naturally occurring cracks and it's the first study to estimate the cyclic strain range and relate it to the number of cycles to failure, for any type of cell. Rupture due to shear movement was ruled out as microcrack closing never occurred, as a result of plastic deformation of the bone. Fatigue failure was found to occur due to cyclic tensile stress in the locality of the damage. The strain range necessary for osteocyte process rupture was quantified. It was found that the lower the process strain range the greater the number of cycles to cell process failure. FEM modelling allowed to predict stress in the vicinity of an osteocyte process and to analyse its interaction with the bone surrounding it: simulations revealed evident creep effects in bone during cyclic loading. This thesis confirms and dismisses aspects of the “scissors model". The observations support the model as a viable mechanism of microcrack detection by the osteocyte network, albeit in a slightly modified form where cyclic loading is necessary and the method of rupture is fatigue failure due to cyclic tensile motion. An in depth study was performed focusing on microscopy analysis of naturally occurring cracks in bone and FEM simulation analysis of an osteocyte process spanning a microcrack in bone under cyclic load.
Resumo:
Damage tolerance analysis is a quite new methodology based on prescribed inspections. The load spectra used to derive results of these analysis strongly influence the final defined inspections programs that for this reason must be as much as possible representative of load acting on the considered structural component and at the same time, obtained reducing both cost and time. The principal purpose of our work is in improving the actual condition developing a complete numerical Damage Tolerance analysis, able to prescribe inspection programs on typical aircraft critical components, respecting DT regulations, starting from much more specific load spectrum then those actually used today. In particular, these more specific load spectrum to design against fatigue have been obtained through an appositively derived flight simulator developed in a Matlab/Simulink environment. This dynamic model has been designed so that it can be used to simulate typical missions performing manually (joystick inputs) or completely automatic (reference trajectory need to be provided) flights. Once these flights have been simulated, model’s outputs are used to generate load spectrum that are then processed to get information (peaks, valleys) to perform statistical and/or comparison consideration with other load spectrum. However, also much more useful information (loads amplitude) have been extracted from these generated load spectrum to perform the previously mentioned predictions (Rainflow counting method is applied for this purpose). The entire developed methodology works in a complete automatic way, so that, once some specified input parameters have been introduced and different typical flights have been simulated both, manually or automatically, it is able to relate the effects of these simulated flights with the reduction of residual strength of the considered component.
Resumo:
Altered pressure in the developing left ventricle (LV) results in altered morphology and tissue material properties. Mechanical stress and strain may play a role in the regulating process. This study showed that confocal microscopy, three-dimensional reconstruction, and finite element analysis can provide a detailed model of stress and strain in the trabeculated embryonic heart. The method was used to test the hypothesis that end-diastolic strains are normalized after altered loading of the LV during the stages of trabecular compaction and chamber formation. Stage-29 chick LVs subjected to pressure overload and underload at stage 21 were reconstructed with full trabecular morphology from confocal images and analyzed with finite element techniques. Measured material properties and intraventricular pressures were specified in the models. The results show volume-weighted end-diastolic von Mises stress and strain averaging 50–82% higher in the trabecular tissue than in the compact wall. The volume-weighted-average stresses for the entire LV were 115, 64, and 147Pa in control, underloaded, and overloaded models, while strains were 11, 7, and 4%; thus, neither was normalized in a volume-weighted sense. Localized epicardial strains at mid-longitudinal level were similar among the three groups and to strains measured from high-resolution ultrasound images. Sensitivity analysis showed changes in material properties are more significant than changes in geometry in the overloaded strain adaptation, although resulting stress was similar in both types of adaptation. These results emphasize the importance of appropriate metrics and the role of trabecular tissue in evaluating the evolution of stress and strain in relation to pressure-induced adaptation.
Resumo:
To check the effectiveness of campaigns preventing drug abuse or indicating local effects of efforts against drug trafficking, it is beneficial to know consumed amounts of substances in a high spatial and temporal resolution. The analysis of drugs of abuse in wastewater (WW) has the potential to provide this information. In this study, the reliability of WW drug consumption estimates is assessed and a novel method presented to calculate the total uncertainty in observed WW cocaine (COC) and benzoylecgonine (BE) loads. Specifically, uncertainties resulting from discharge measurements, chemical analysis and the applied sampling scheme were addressed and three approaches presented. These consist of (i) a generic model-based procedure to investigate the influence of the sampling scheme on the uncertainty of observed or expected drug loads, (ii) a comparative analysis of two analytical methods (high performance liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry), including an extended cross-validation by influent profiling over several days, and (iii) monitoring COC and BE concentrations in WW of the largest Swiss sewage treatment plants. In addition, the COC and BE loads observed in the sewage treatment plant of the city of Berne were used to back-calculate the COC consumption. The estimated mean daily consumed amount was 107 ± 21 g of pure COC, corresponding to 321 g of street-grade COC.
Resumo:
Vaccines with limited ability to prevent HIV infection may positively impact the HIV/AIDS pandemic by preventing secondary transmission and disease in vaccine recipients who become infected. To evaluate the impact of vaccination on secondary transmission and disease, efficacy trials assess vaccine effects on HIV viral load and other surrogate endpoints measured after infection. A standard test that compares the distribution of viral load between the infected subgroups of vaccine and placebo recipients does not assess a causal effect of vaccine, because the comparison groups are selected after randomization. To address this problem, we formulate clinically relevant causal estimands using the principal stratification framework developed by Frangakis and Rubin (2002), and propose a class of logistic selection bias models whose members identify the estimands. Given a selection model in the class, procedures are developed for testing and estimation of the causal effect of vaccination on viral load in the principal stratum of subjects who would be infected regardless of randomization assignment. We show how the procedures can be used for a sensitivity analysis that quantifies how the causal effect of vaccination varies with the presumed magnitude of selection bias.
Resumo:
BACKGROUND: CD4+ T-cell recovery in patients with continuous suppression of plasma HIV-1 viral load (VL) is highly variable. This study aimed to identify predictive factors for long-term CD4+ T-cell increase in treatment-naive patients starting combination antiretroviral therapy (cART). METHODS: Treatment-naive patients in the Swiss HIV Cohort Study reaching two VL measurements <50 copies/ml >3 months apart during the 1st year of cART were included (n=1816 patients). We studied CD4+ T-cell dynamics until the end of suppression or up to 5 years, subdivided into three periods: 1st year, years 2-3 and years 4-5 of suppression. Multiple median regression adjusted for repeated CD4+ T-cell measurements was used to study the dependence of CD4+ T-cell slopes on clinical covariates and drug classes. RESULTS: Median CD4+ T-cell increases following VL suppression were 87, 52 and 19 cells/microl per year in the three periods. In the multiple regression model, median CD4+ T-cell increases over all three periods were significantly higher for female gender, lower age, higher VL at cART start, CD4+ T-cell <650 cells/microl at start of the period and low CD4+ T-cell increase in the previous period. Patients on tenofovir showed significantly lower CD4+ T-cell increases compared with stavudine. CONCLUSIONS: In our observational study, long-term CD4+ T-cell increase in drug-naive patients with suppressed VL was higher in regimens without tenofovir. The clinical relevance of these findings must be confirmed in, ideally, clinical trials or large, collaborative cohort projects but could influence treatment of older patients and those starting cART at low CD4+ T-cell levels.
Resumo:
This report presents the development of a Stochastic Knock Detection (SKD) method for combustion knock detection in a spark-ignition engine using a model based design approach. Knock Signal Simulator (KSS) was developed as the plant model for the engine. The KSS as the plant model for the engine generates cycle-to-cycle accelerometer knock intensities following a stochastic approach with intensities that are generated using a Monte Carlo method from a lognormal distribution whose parameters have been predetermined from engine tests and dependent upon spark-timing, engine speed and load. The lognormal distribution has been shown to be a good approximation to the distribution of measured knock intensities over a range of engine conditions and spark-timings for multiple engines in previous studies. The SKD method is implemented in Knock Detection Module (KDM) which processes the knock intensities generated by KSS with a stochastic distribution estimation algorithm and outputs estimates of high and low knock intensity levels which characterize knock and reference level respectively. These estimates are then used to determine a knock factor which provides quantitative measure of knock level and can be used as a feedback signal to control engine knock. The knock factor is analyzed and compared with a traditional knock detection method to detect engine knock under various engine operating conditions. To verify the effectiveness of the SKD method, a knock controller was also developed and tested in a model-in-loop (MIL) system. The objective of the knock controller is to allow the engine to operate as close as possible to its border-line spark-timing without significant engine knock. The controller parameters were tuned to minimize the cycle-to-cycle variation in spark timing and the settling time of the controller in responding to step increase in spark advance resulting in the onset of engine knock. The simulation results showed that the combined system can be used adequately to model engine knock and evaluated knock control strategies for a wide range of engine operating conditions.
Resumo:
The emissions, filtration and oxidation characteristics of a diesel oxidation catalyst (DOC) and a catalyzed particulate filter (CPF) in a Johnson Matthey catalyzed continuously regenerating trap (CCRT ®) were studied by using computational models. Experimental data needed to calibrate the models were obtained by characterization experiments with raw exhaust sampling from a Cummins ISM 2002 engine with variable geometry turbocharging (VGT) and programmed exhaust gas recirculation (EGR). The experiments were performed at 20, 40, 60 and 75% of full load (1120 Nm) at rated speed (2100 rpm), with and without the DOC upstream of the CPF. This was done to study the effect of temperature and CPF-inlet NO2 concentrations on particulate matter oxidation in the CCRT ®. A previously developed computational model was used to determine the kinetic parameters describing the oxidation characteristics of HCs, CO and NO in the DOC and the pressure drop across it. The model was calibrated at five temperatures in the range of 280 – 465° C, and exhaust volumetric flow rates of 0.447 – 0.843 act-m3/sec. The downstream HCs, CO and NO concentrations were predicted by the DOC model to within ±3 ppm. The HCs and CO oxidation kinetics in the temperature range of 280 - 465°C and an exhaust volumetric flow rate of 0.447 - 0.843 act-m3/sec can be represented by one ’apparent’ activation energy and pre-exponential factor. The NO oxidation kinetics in the same temperature and exhaust flow rate range can be represented by ’apparent’ activation energies and pre-exponential factors in two regimes. The DOC pressure drop was always predicted within 0.5 kPa by the model. The MTU 1-D 2-layer CPF model was enhanced in several ways to better model the performance of the CCRT ®. A model to simulate the oxidation of particulate inside the filter wall was developed. A particulate cake layer filtration model which describes particle filtration in terms of more fundamental parameters was developed and coupled to the wall oxidation model. To better model the particulate oxidation kinetics, a model to take into account the NO2 produced in the washcoat of the CPF was developed. The overall 1-D 2-layer model can be used to predict the pressure drop of the exhaust gas across the filter, the evolution of particulate mass inside the filter, the particulate mass oxidized, the filtration efficiency and the particle number distribution downstream of the CPF. The model was used to better understand the internal performance of the CCRT®, by determining the components of the total pressure drop across the filter, by classifying the total particulate matter in layer I, layer II, the filter wall, and by the means of oxidation i.e. by O2, NO2 entering the filter and by NO2 being produced in the filter. The CPF model was calibrated at four temperatures in the range of 280 – 465 °C, and exhaust volumetric flow rates of 0.447 – 0.843 act-m3/sec, in CPF-only and CCRT ® (DOC+CPF) configurations. The clean filter wall permeability was determined to be 2.00E-13 m2, which is in agreement with values in the literature for cordierite filters. The particulate packing density in the filter wall had values between 2.92 kg/m3 - 3.95 kg/m3 for all the loads. The mean pore size of the catalyst loaded filter wall was found to be 11.0 µm. The particulate cake packing densities and permeabilities, ranged from 131 kg/m3 - 134 kg/m3, and 0.42E-14 m2 and 2.00E-14 m2 respectively, and are in agreement with the Peclet number correlations in the literature. Particulate cake layer porosities determined from the particulate cake layer filtration model ranged between 0.841 and 0.814 and decreased with load, which is about 0.1 lower than experimental and more complex discrete particle simulations in the literature. The thickness of layer I was kept constant at 20 µm. The model kinetics in the CPF-only and CCRT ® configurations, showed that no ’catalyst effect’ with O2 was present. The kinetic parameters for the NO2-assisted oxidation of particulate in the CPF were determined from the simulation of transient temperature programmed oxidation data in the literature. It was determined that the thermal and NO2 kinetic parameters do not change with temperature, exhaust flow rate or NO2 concentrations. However, different kinetic parameters are used for particulate oxidation in the wall and on the wall. Model results showed that oxidation of particulate in the pores of the filter wall can cause disproportionate decreases in the filter pressure drop with respect to particulate mass. The wall oxidation model along with the particulate cake filtration model were developed to model the sudden and rapid decreases in pressure drop across the CPF. The particulate cake and wall filtration models result in higher particulate filtration efficiencies than with just the wall filtration model, with overall filtration efficiencies of 98-99% being predicted by the model. The pre-exponential factors for oxidation by NO2 did not change with temperature or NO2 concentrations because of the NO2 wall production model. In both CPF-only and CCRT ® configurations, the model showed NO2 and layer I to be the dominant means and dominant physical location of particulate oxidation respectively. However, at temperatures of 280 °C, NO2 is not a significant oxidizer of particulate matter, which is in agreement with studies in the literature. The model showed that 8.6 and 81.6% of the CPF-inlet particulate matter was oxidized after 5 hours at 20 and 75% load in CCRT® configuration. In CPF-only configuration at the same loads, the model showed that after 5 hours, 4.4 and 64.8% of the inlet particulate matter was oxidized. The increase in NO2 concentrations across the DOC contributes significantly to the oxidation of particulate in the CPF and is supplemented by the oxidation of NO to NO2 by the catalyst in the CPF, which increases the particulate oxidation rates. From the model, it was determined that the catalyst in the CPF modeslty increases the particulate oxidation rates in the range of 4.5 – 8.3% in the CCRT® configuration. Hence, the catalyst loading in the CPF of the CCRT® could possibly be reduced without significantly decreasing particulate oxidation rates leading to catalyst cost savings and better engine performance due to lower exhaust backpressures.
Resumo:
BACKGROUND: The authors have shown that rats can be retrained to swim after a moderately severe thoracic spinal cord contusion. They also found that improvements in body position and hindlimb activity occurred rapidly over the first 2 weeks of training, reaching a plateau by week 4. Overground walking was not influenced by swim training, suggesting that swimming may be a task-specific model of locomotor retraining. OBJECTIVE: To provide a quantitative description of hindlimb movements of uninjured adult rats during swimming, and then after injury and retraining. METHODS: The authors used a novel and streamlined kinematic assessment of swimming in which each limb is described in 2 dimensions, as 3 segments and 2 angles. RESULTS: The kinematics of uninjured rats do not change over 4 weeks of daily swimming, suggesting that acclimatization does not involve refinements in hindlimb movement. After spinal cord injury, retraining involved increases in hindlimb excursion and improved limb position, but the velocity of the movements remained slow. CONCLUSION: These data suggest that the activity pattern of swimming is hardwired in the rat spinal cord. After spinal cord injury, repetition is sufficient to bring about significant improvements in the pattern of hindlimb movement but does not improve the forces generated, leaving the animals with persistent deficits. These data support the concept that force (load) and pattern generation (recruitment) are independent and may have to be managed together with respect to postinjury rehabilitation.
Resumo:
BACKGROUND: A fixed cavovarus foot deformity can be associated with anteromedial ankle arthrosis due to elevated medial joint contact stresses. Supramalleolar valgus osteotomies (SMOT) and lateralizing calcaneal osteotomies (LCOT) are commonly used to treat symptoms by redistributing joint contact forces. In a cavovarus model, the effects of SMOT and LCOT on the lateralization of the center of force (COF) and reduction of the peak pressure in the ankle joint were compared. METHODS: A previously published cavovarus model with fixed hindfoot varus was simulated in 10 cadaver specimens. Closing wedge supramalleolar valgus osteotomies 3 cm above the ankle joint level (6 and 11 degrees) and lateral sliding calcaneal osteotomies (5 and 10 mm displacement) were analyzed at 300 N axial static load (half body weight). The COF migration and peak pressure decrease in the ankle were recorded using high-resolution TekScan pressure sensors. RESULTS: A significant lateral COF shift was observed for each osteotomy: 2.1 mm for the 6 degrees (P = .014) and 2.3 mm for the 11 degrees SMOT (P = .010). The 5 mm LCOT led to a lateral shift of 2.0 mm (P = .042) and the 10 mm LCOT to a shift of 3.0 mm (P = .006). Comparing the different osteotomies among themselves no significant differences were recorded. No significant anteroposterior COF shift was seen. A significant peak pressure reduction was recorded for each osteotomy: The SMOT led to a reduction of 29% (P = .033) for the 6 degrees and 47% (P = .003) for the 11 degrees osteotomy, and the LCOT to a reduction of 41% (P = .003) for the 5 mm and 49% (P = .002) for the 10 mm osteotomy. Similar to the COF lateralization no significant differences between the osteotomies were seen. CONCLUSION: LCOT and SMOT significantly reduced anteromedial ankle joint contact stresses in this cavovarus model. The unloading effects of both osteotomies were equivalent. More correction did not lead to significantly more lateralization of the COF or more reduction of peak pressure but a trend was seen. CLINICAL RELEVANCE: In patients with fixed cavovarus feet, both SMOT and LCOT provided equally good redistribution of elevated ankle joint contact forces. Increasing the amount of displacement did not seem to equally improve the joint pressures. The site of osteotomy could therefore be chosen on the basis of surgeon's preference, simplicity, or local factors in case of more complex reconstructions.
Resumo:
BACKGROUND Monitoring of HIV viral load in patients on combination antiretroviral therapy (ART) is not generally available in resource-limited settings. We examined the cost-effectiveness of qualitative point-of-care viral load tests (POC-VL) in sub-Saharan Africa. DESIGN Mathematical model based on longitudinal data from the Gugulethu and Khayelitsha township ART programmes in Cape Town, South Africa. METHODS Cohorts of patients on ART monitored by POC-VL, CD4 cell count or clinically were simulated. Scenario A considered the more accurate detection of treatment failure with POC-VL only, and scenario B also considered the effect on HIV transmission. Scenario C further assumed that the risk of virologic failure is halved with POC-VL due to improved adherence. We estimated the change in costs per quality-adjusted life-year gained (incremental cost-effectiveness ratios, ICERs) of POC-VL compared with CD4 and clinical monitoring. RESULTS POC-VL tests with detection limits less than 1000 copies/ml increased costs due to unnecessary switches to second-line ART, without improving survival. Assuming POC-VL unit costs between US$5 and US$20 and detection limits between 1000 and 10,000 copies/ml, the ICER of POC-VL was US$4010-US$9230 compared with clinical and US$5960-US$25540 compared with CD4 cell count monitoring. In Scenario B, the corresponding ICERs were US$2450-US$5830 and US$2230-US$10380. In Scenario C, the ICER ranged between US$960 and US$2500 compared with clinical monitoring and between cost-saving and US$2460 compared with CD4 monitoring. CONCLUSION The cost-effectiveness of POC-VL for monitoring ART is improved by a higher detection limit, by taking the reduction in new HIV infections into account and assuming that failure of first-line ART is reduced due to targeted adherence counselling.
Resumo:
Nucleus pulposus (NP) regeneration by the application of injectable cell-embedded hydrogels is an appealing approach for tissue engineering. We investigated a thermo-reversible hydrogel (TR-HG), based on a modified polysaccharide with a thermo-reversible polyamide [poly(N-isopropylacrylamide), pNIPAM], which is made to behave as a liquid at room temperature and hardens at > 32 °C. In order to test the hydrogel, a papain-induced bovine caudal disc degeneration model (PDDM), creating a cavity in the NP, was employed. Human mesenchymal stem cells (hMSCs) or autologous bovine NP cells (bNPCs) were seeded in TR-HG; hMSCs were additionally preconditioned with rhGDF-5 for 7 days. Then, TR-HG was reversed to a fluid and the cell suspension injected into the PDDM and kept under static loading for 7 days. Experimental design was: (D1) fresh disc control + PBS injection; (D2) PDDM + PBS injection; (D3) PDDM + TR-HG (material control); (D4) PDDM + TR-HG + bNPCs; (D5) PDDM + TR-HG + hMSCs. Magnetic resonance imaging performed before and after loading, on days 9 and 16, allowed imaging of the hydrogel-filled PDDM and assessment of disc height and volume changes. In gel-injected discs the NP region showed a major drop in volume and disc height during culture under static load. The RT–PCR results of injected hMSCs showed significant upregulation of ACAN, COL2A1, VCAN and SOX9 during culture in the disc cavity, whereas the gene expression profile of NP cells remained unchanged. The cell viability of injected cells (NPCs or hMSCs) was maintained at over 86% in 3D culture and dropped to ~72% after organ culture. Our results underline the need for load-bearing hydrogels that are also cyto-compatible.