906 resultados para Lipid Metabolism Disorders
Resumo:
The aim of this single-blind, placebo-controlled study was to investigate the effects of the new beta-adrenergic compound Ro 40-2148 on resting energy expenditure (REE) at rest and after an oral glucose load in non-diabetic obese women before and after two weeks of treatment. After one week of placebo administration and after an overnight fast and one hour rest, REE and glucose and lipid oxidation rates were measured by indirect calorimetry (hood system) before and for 6 h after a single dose of placebo solution. A 75 g oral glucose tolerance test (OGTT) was performed during this period starting 90 min after the placebo administration. During the following two weeks, using a randomization design, six patients received Ro 40-2148 at a dose of 400 mg diluted in 100 ml water twice a day (i.e. 800 mg per day), while six others continued with the placebo administration. The same tests and measurements were repeated after two weeks, except for the treatment group which received the drug instead of the placebo. The 14-day period of drug administration did not increase REE measured in post-absorptive conditions. Similarly, there was no acute effect on REE of a 400 mg dose of Ro 40-2148. In contrast, glucose-induced thermogenesis was significantly increased after two weeks in the treatment group (means +/- s.e.m.: 3.7 +/- 1.3%, P = 0.047), while no change was observed in the placebo group (-0.8 +/- 0.7%, not significant). Since there was no significant change in the respiratory quotient, the increase in energy expenditure observed in the treatment group was due to stimulation of both lipid and glucose oxidation. The drug induced no variations in heart rate, blood pressure, axillary temperature or in plasma glucose, insulin and free fatty acid levels. In conclusion, this study shows that Ro 40-2148 activates glucose-induced thermogenesis in obese non-diabetic patients.
Resumo:
Genetically homogenous C57Bl/6 mice display differential metabolic adaptation when fed a high fat diet for 9 months. Most become obese and diabetic, but a significant fraction remains lean and diabetic or lean and non-diabetic. Here, we performed microarray analysis of "metabolic" transcripts expressed in liver and hindlimb muscles to evaluate: (i) whether expressed transcript patterns could indicate changes in metabolic pathways associated with the different phenotypes, (ii) how these changes differed from the early metabolic adaptation to short term high fat feeding, and (iii) whether gene classifiers could be established that were characteristic of each metabolic phenotype. Our data indicate that obesity/diabetes was associated with preserved hepatic lipogenic gene expression and increased plasma levels of very low density lipoprotein and, in muscle, with an increase in lipoprotein lipase gene expression. This suggests increased muscle fatty acid uptake, which may favor insulin resistance. In contrast, the lean mice showed a strong reduction in the expression of hepatic lipogenic genes, in particular of Scd-1, a gene linked to sensitivity to diet-induced obesity; the lean and non-diabetic mice presented an additional increased expression of eNos in liver. After 1 week of high fat feeding the liver gene expression pattern was distinct from that seen at 9 months in any of the three mouse groups, thus indicating progressive establishment of the different phenotypes. Strikingly, development of the obese phenotype involved re-expression of Scd-1 and other lipogenic genes. Finally, gene classifiers could be established that were characteristic of each metabolic phenotype. Together, these data suggest that epigenetic mechanisms influence gene expression patterns and metabolic fates.
Dipeptidyl-peptidase-IV by cleaving neuropeptide Y induces lipid accumulation and PPAR-γ expression.
Resumo:
We evaluated the effects of dipeptidyl peptidase-IV (DPPIV), and its inhibitor, vildagliptin, on adipogenesis and lipolysis in a pre-adipocyte murine cell line (3T3-L1). The exogenous rDPPIV increased lipid accumulation and PPAR-γ expression, whereas an inhibitor of DPPIV, the anti-diabetic drug vildagliptin, suppresses the stimulatory role of DPPIV on adipogenesis and lipid accumulation, but had no effect on lipolysis. NPY immunoneutralization or NPY Y(2) receptor blockage inhibited DPPIV stimulatory effects on lipid accumulation, collectively, indicating that DPPIV has an adipogenic effect through NPY cleavage and subsequent NPY Y(2) activation. Vildagliptin inhibits PPAR-γ expression and lipid accumulation without changing lipolysis, suggesting that this does not impair the ability of adipose tissue to store triglycerides inside lipid droplets. These data indicate that DPPIV and NPY interact on lipid metabolism to promote adipose tissue depot.
Resumo:
Development of cardiac hypertrophy and progression to heart failure entails profound changes in myocardial metabolism, characterized by a switch from fatty acid utilization to glycolysis and lipid accumulation. We report that hypoxia-inducible factor (HIF)1alpha and PPARgamma, key mediators of glycolysis and lipid anabolism, respectively, are jointly upregulated in hypertrophic cardiomyopathy and cooperate to mediate key changes in cardiac metabolism. In response to pathologic stress, HIF1alpha activates glycolytic genes and PPARgamma, whose product, in turn, activates fatty acid uptake and glycerolipid biosynthesis genes. These changes result in increased glycolytic flux and glucose-to-lipid conversion via the glycerol-3-phosphate pathway, apoptosis, and contractile dysfunction. Ventricular deletion of Hif1alpha in mice prevents hypertrophy-induced PPARgamma activation, the consequent metabolic reprogramming, and contractile dysfunction. We propose a model in which activation of the HIF1alpha-PPARgamma axis by pathologic stress underlies key changes in cell metabolism that are characteristic of and contribute to common forms of heart disease.
Resumo:
Proteins secreted from adipose tissue are increasingly recognized to play an important role in the regulation of glucose metabolism. However, much less is known about their effect on lipid metabolism. The fasting-induced adipose factor (FIAF/angiopoietin-like protein 4/peroxisome proliferator-activated receptor gamma angiopoietin-related protein) was previously identified as a target of hypolipidemic fibrate drugs and insulin-sensitizing thiazolidinediones. Using transgenic mice that mildly overexpress FIAF in peripheral tissues we show that FIAF is an extremely powerful regulator of lipid metabolism and adiposity. FIAF overexpression caused a 50% reduction in adipose tissue weight, partly by stimulating fatty acid oxidation and uncoupling in fat. In addition, FIAF overexpression increased plasma levels of triglycerides, free fatty acids, glycerol, total cholesterol, and high density lipoprotein (HDL)-cholesterol. Functional tests indicated that FIAF overexpression severely impaired plasma triglyceride clearance but had no effect on very low density lipoprotein production. The effects of FIAF overexpression were amplified by a high fat diet, resulting in markedly elevated plasma and liver triglycerides, plasma free fatty acids, and plasma glycerol levels, and impaired glucose tolerance in FIAF transgenic mice fed a high fat diet. Remarkably, in mice the full-length form of FIAF was physically associated with HDL, whereas truncated FIAF was associated with low density lipoprotein. In human both full-length and truncated FIAF were associated with HDL. The composite data suggest that via physical association with plasma lipoproteins, FIAF acts as a powerful signal from fat and other tissues to prevent fat storage and stimulate fat mobilization. Our data indicate that disturbances in FIAF signaling might be involved in dyslipidemia.
Resumo:
The purpose of this study was to compare the effects of propranolol administered either by i.v. infusion or by prolonged oral administration (4 days) during the first 3 weeks following burns. The resting metabolic rate (RMR) of 10 non-infected fasting burned patients (TBSA: 28 per cent, range 18-37 per cent) was determined four times consecutively by indirect calorimetry (open circuit hood system) following: (1) i.v. physiological saline; (2) i.v. propranolol infusion (2 micrograms/kg/min following a bolus of 80 micrograms/kg); (3) oral propranolol (40 mg q.i.d. during 4 +/- 1 days); and (4) in control patients. All patients showed large increases in both RMR (144 +/- 2 per cent of reference values) and in urinary catecholamine excretion (three to four times as compared to control values). The infusion of propranolol induced a significant decrease in RMR to 135 +/- 2 per cent and oral propranolol to 129 +/- 3 per cent of reference values. A decrease in lipid oxidation but no change in carbohydrate and protein oxidation were observed during propranolol administration. It is concluded that the decrease in RMR induced by propranolol was not influenced by the route of administration. The magnitude of the decrease in energy expenditure suggests that beta-adrenergic hyperactivity represents only one of the mediators of the hypermetabolic response to burn injury.
Resumo:
BACKGROUND: Dairy calcium supplementation has been proposed to increase fat oxidation and to inhibit lipogenesis. OBJECTIVE: We aimed to investigate the effects of calcium supplementation on markers of fat metabolism. DESIGN: In a placebo-controlled, crossover experiment, 10 overweight or obese subjects who were low calcium consumers received 800 mg dairy Ca/d for 5 wk. After 4 wk, adipose tissue was taken for biopsy for analysis of gene expression. Respiratory exchange, glycerol turnover, and subcutaneous adipose tissue microdialysis were performed for 7 h after consumption of 400 mg Ca or placebo, and the ingestion of either randomized slow-release caffeine (SRC; 300 mg) or lactose (500 mg). One week later, the test was repeated with the SRC or lactose crossover. RESULTS: Calcium supplementation increased urinary calcium excretion by 16% (P = 0.017) but did not alter plasma parathyroid hormone or osteocalcin concentrations. Resting energy expenditure (59.9 +/- 3.0 or 59.6 +/- 3.3 kcal/h), fat oxidation (58.4 +/- 2.5 or 53.8 +/- 2.2 mg/min), plasma free fatty acid concentrations (0.63 +/- 0.02 or 0.62 +/- 0.03 mmol/L), and glycerol turnover (3.63 +/- 0.41 or 3.70 +/- 0.38 micromol . kg(-1) . min(-1)) were similar with or without calcium, respectively. SRC significantly increased free fatty acid concentrations, resting fat oxidation, and resting energy expenditure. During microdialysis, epinephrine increased dialysate glycerol concentrations by 250% without and 254% with calcium. Expression of 7 key metabolic genes in subcutaneous adipose tissue was not affected by calcium supplementation. CONCLUSION: Dairy calcium supplementation in overweight subjects with habitually low calcium intakes failed to alter fat metabolism and energy expenditure under resting conditions and during acute stimulation by caffeine or epinephrine
Resumo:
Skeletal muscle is considered to be a major site of energy expenditure and thus is important in regulating events affecting metabolic disorders. Over the years, both in vitro and in vivo approaches have established the role of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) in fatty acid metabolism and energy expenditure in skeletal muscles. Pharmacological activation of PPARβ/δ by specific ligands regulates the expression of genes involved in lipid use, triglyceride hydrolysis, fatty acid oxidation, energy expenditure, and lipid efflux in muscles, in turn resulting in decreased body fat mass and enhanced insulin sensitivity. Both the lipid-lowering and the anti-diabetic effects exerted by the induction of PPARβ/δ result in the amelioration of symptoms of metabolic disorders. This review summarizes the action of PPARβ/δ activation in energy metabolism in skeletal muscles and also highlights the unexplored pathways in which it might have potential effects in the context of muscular disorders. Numerous preclinical studies have identified PPARβ/δ as a probable potential target for therapeutic interventions. Although PPARβ/δ agonists have not yet reached the market, several are presently being investigated in clinical trials.
Resumo:
The V-ATPase V(0) sector associates with the peripheral V(1) sector to form a proton pump. V(0) alone has an additional function, facilitating membrane fusion in the endocytic and late exocytic pathways. V(0) contains a hexameric proteolipid cylinder, which might support fusion as proposed in proteinaceous pore models. To test this, we randomly mutagenized proteolipids. We recovered alleles that preserve proton translocation, normal SNARE activation and trans-SNARE pairing but that impair lipid and content mixing. Critical residues were found in all subunits of the proteolipid ring. They concentrate within the bilayer, close to the ring subunit interfaces. The fusion-impairing proteolipid substitutions stabilize the interaction of V(0) with V(1). Deletion of the vacuolar v-SNARE Nyv1 has the same effect, suggesting that both types of mutations similarly alter the conformation of V(0). Also covalent linkage of subunits in the proteolipid cylinder blocks vacuole fusion. We propose that a SNARE-dependent conformational change in V(0) proteolipids might stimulate fusion by creating a hydrophobic crevice that promotes lipid reorientation and formation of a lipidic fusion pore.
Resumo:
The measurement of fat balance (fat input minus fat output) involves the accurate estimation of both metabolizable fat intake and total fat oxidation. This is possible mostly under laboratory conditions and not yet in free-living conditions. In the latter situation, net fat retention/mobilization can be estimated based on precise and accurate sequential body composition measurements. In case of positive balance, lipids stored in adipose tissue can originate from dietary (exogenous) lipids or from nonlipid precursors, mainly from carbohydrates (CHOs) but also from ethanol, through a process known as de novo lipogenesis (DNL). Basic equations are provided in this review to facilitate the interpretation of the different subcomponents of fat balance (endogenous vs exogenous) under different nutritional circumstances. One difficulty is methodological: total DNL is difficult to measure quantitatively in man; for example, indirect calorimetry only tracks net DNL, not total DNL. Although the numerous factors (mostly exogenous) influencing DNL have been studied, in particular the effect of CHO overfeeding, there is little information on the rate of DNL in habitual conditions of life, that is, large day-to-day fluctuations of CHO intakes, different types of CHO ingested with different glycemic indexes, alcohol combined with excess CHO intakes, etc. Three issues, which are still controversial today, will be addressed: (1) Is the increase of fat mass induced by CHO overfeeding explained by DNL only, or by decreased endogenous fat oxidation, or both? (2) Is DNL different in overweight and obese individuals as compared to their lean counterparts? (3) Does DNL occur both in the liver and in adipose tissue? Recent studies have demonstrated that acute CHO overfeeding influences adipose tissue lipogenic gene expression and that CHO may stimulate DNL in skeletal muscles, at least in vitro. The role of DNL and its importance in health and disease remain to be further clarified, in particular the putative effect of DNL on the control of energy intake and energy expenditure, as well as the occurrence of DNL in other tissues (such as in myocytes) in addition to hepatocytes and adipocytes.
Resumo:
This review summarizes the rationale for personalized exercise training in obesity and diabetes, targeted at the level of maximal lipid oxidation as can be determined by exercise calorimetry. This measurement is reproducible and reflects muscles' ability to oxidize lipids. Targeted training at this level is well tolerated, increases the ability to oxidize lipids during exercise and improves body composition, lipid and inflammatory status, and glycated hemoglobin, thus representing a possible future strategy for exercise prescription in patients suffering from obesity and diabetes.
Resumo:
Significance: Current lifestyles with high-energy diets and little exercise are triggering an alarming growth in obesity. Excess of adiposity is leading to severe increases in associated pathologies, such as insulin resistance, type 2 diabetes, atherosclerosis, cancer, arthritis, asthma, and hypertension. This, together with the lack of efficient obesity drugs, is the driving force behind much research. Recent Advances: Traditional anti-obesity strategies focused on reducing food intake and increasing physical activity. However, recent results suggest that enhancing cellular energy expenditure may be an attractive alternative therapy. Critical Issues: This review evaluates recent discoveries regarding mitochondrial fatty acid oxidation (FAO) and its potential as a therapy for obesity. We focus on the still controversial beneficial effects of increased FAO in liver and muscle, recent studies on how to potentiate adipose tissue energy expenditure, and the different hypotheses involving FAO and the reactive oxygen species production in the hypothalamic control of food intake. Future Directions: The present review aims to provide an overview of novel anti-obesity strategies that target mitochondrial FAO and that will definitively be of high interest in the future research to fight against obesity-related disorders.
Resumo:
OBJECTIVE: Genetic studies might provide new insights into the biological mechanisms underlying lipid metabolism and risk of CAD. We therefore conducted a genome-wide association study to identify novel genetic determinants of low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides. METHODS AND RESULTS: We combined genome-wide association data from 8 studies, comprising up to 17 723 participants with information on circulating lipid concentrations. We did independent replication studies in up to 37 774 participants from 8 populations and also in a population of Indian Asian descent. We also assessed the association between single-nucleotide polymorphisms (SNPs) at lipid loci and risk of CAD in up to 9 633 cases and 38 684 controls. We identified 4 novel genetic loci that showed reproducible associations with lipids (probability values, 1.6×10(-8) to 3.1×10(-10)). These include a potentially functional SNP in the SLC39A8 gene for HDL-C, an SNP near the MYLIP/GMPR and PPP1R3B genes for LDL-C, and at the AFF1 gene for triglycerides. SNPs showing strong statistical association with 1 or more lipid traits at the CELSR2, APOB, APOE-C1-C4-C2 cluster, LPL, ZNF259-APOA5-A4-C3-A1 cluster and TRIB1 loci were also associated with CAD risk (probability values, 1.1×10(-3) to 1.2×10(-9)). CONCLUSIONS: We have identified 4 novel loci associated with circulating lipids. We also show that in addition to those that are largely associated with LDL-C, genetic loci mainly associated with circulating triglycerides and HDL-C are also associated with risk of CAD. These findings potentially provide new insights into the biological mechanisms underlying lipid metabolism and CAD risk.
Resumo:
The increase in VLDL TAG concentration after ingestion of a high-fructose diet is more pronounced in men than in pre-menopausal women. We hypothesised that this may be due to a lower fructose-induced stimulation of de novo lipogenesis (DNL) in pre-menopausal women. To evaluate this hypothesis, nine healthy male and nine healthy female subjects were studied after ingestion of oral loads of fructose enriched with 13C6 fructose. Incorporation of 13C into breath CO2, plasma glucose and plasma VLDL palmitate was monitored to evaluate total fructose oxidation, gluconeogenesis and hepatic DNL, respectively. Substrate oxidation was assessed by indirect calorimetry. After 13C fructose ingestion, 44.0 (sd 3.2)% of labelled carbons were recovered in plasma glucose in males v. 41.9 (sd 2.3)% in females (NS), and 42.9 (sd 3.7)% of labelled carbons were recovered in breath CO2 in males v. 43.0 (sd 4.5)% in females (NS), indicating similar gluconeogenesis from fructose and total fructose oxidation in males and females. The area under the curve for 13C VLDL palmitate tracer-to-tracee ratio was four times lower in females (P < 0.05), indicating a lower DNL. Furthermore, lipid oxidation was significantly suppressed in males (by 16.4 (sd 5.2), P < 0.05), but it was not suppressed in females ( -1.3 (sd 4.7)%). These results support the hypothesis that females may be protected against fructose-induced hypertriglyceridaemia because of a lower stimulation of DNL and a lower suppression of lipid oxidation.
Resumo:
Control of lipid droplet (LD) nucleation and copy number are critical, yet poorly understood, processes. We use model peptides that shift from the endoplasmic reticulum (ER) to LDs in response to fatty acids to characterize the initial steps of LD formation occurring in lipid-starved cells. Initially, arriving lipids are rapidly packed in LDs that are resistant to starvation (pre-LDs). Pre-LDs are restricted ER microdomains with a stable core of neutral lipids. Subsequently, a first round of"emerging" LDs is nucleated, providing additional lipid storage capacity. Finally, in proportion to lipid concentration, new rounds of LDs progressively assemble. Confocal microscopy and electron tomography suggest that emerging LDs are nucleated in a limited number of ER microdomains after a synchronized stepwise process of protein gathering, lipid packaging, and recognition by Plin3 and Plin2. A comparative analysis demonstrates that the acyl-CoA synthetase 3 is recruited early to the assembly sites, where it is required for efficient LD nucleation and lipid storage.