962 resultados para Linkage Analysis


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hypertension (HT) is mediated by the interaction of many genetic and environmental factors. Previous genome-wide linkage analysis studies have found many loci that show linkage to HT or blood pressure (BP) regulation, but the results were generally inconsistent. Gene by environment interaction is among the reasons that potentially explain these inconsistencies between studies. Here we investigate influences of gene by smoking (GxS) interaction on HT and BP in European American (EA), African American (AA) and Mexican American (MA) families from the GENOA study. A variance component-based method was utilized to perform genome-wide linkage analysis of systolic blood pressure (SBP), diastolic blood pressure (DBP), and HT status, as well as bivariate analysis for SBP and DBP for smokers, non-smokers, and combined groups. The most significant results were found for SBP in MA. The strongest signal was for chromosome 17q24 (LOD = 4.2), increased to (LOD = 4.7) in bivariate analysis but there was no evidence of GxS interaction at this locus (p = 0.48). Two signals were identified only in one group: on chromosome 15q26.2 (LOD = 3.37) in non-smokers and chromosome 7q21.11 (LOD = 1.4) in smokers, both of which had strong evidence for GxS interaction (p = 0.00039 and 0.009 respectively). There were also two other signals, one on chromosome 20q12 (LOD = 2.45) in smokers, which became much higher in the combined sample (LOD = 3.53), and one on chromosome 6p22.2 (LOD = 2.06) in non-smokers. Neither peak had very strong evidence for GxS interaction (p = 0.08 and 0.06 respectively). A fine mapping association study was performed using 200 SNPs in 30 genes located under the linkage signals on chromosomes 15 and 17. Under the chromosome 15 peak, the association analysis identified 6 SNPs accounting for a 7 mmHg increase in SBP in MA non-smokers. For the chromosome 17 linkage peak, the association analysis identified 3 SNPs accounting for a 6 mmHg increase in SBP in MA. However, none of these SNPs was significant after correcting for multiple testing, and accounting for them in the linkage analysis produced very small reductions in the linkage signal. ^ The linkage analysis of BP traits considering the smoking status produced very interesting signals for SBP in the MA population. The fine mapping association analysis gave some insight into the contribution of some SNPs to two of the identified signals, but since these SNPs did not remain significant after multiple testing correction and did not explain the linkage peaks, more work is needed to confirm these exploratory results and identify the culprit variations under these linkage peaks. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Among Mexican Americans, the second largest minority group in the United States, the prevalence of gallbladder disease is markedly elevated. Previous data from both genetic admixture and family studies indicate that there is a genetic component to the occurrence of gallbladder disease in Mexican Americans. However, prior to this thesis no formal genetic analysis of gallbladder disease had been carried out nor had any contributing genes been identified.^ The results of complex segregation analysis in a sample of 232 Mexican American pedigrees documented the existence of a major gene having two alleles with age- and gender-specific effects influencing the occurrence of gallbladder disease. The estimated frequency of the allele increasing susceptibility was 0.39. The lifetime probabilities that an individual will be affected by gallbladder disease were 1.0, 0.54, and 0.00 for females of genotypes "AA", "Aa", and "aa", respectively, and 0.68, 0.30, and 0.00 for males, respectively. This analysis provided the first conclusive evidence for the existence of a common single gene having a large effect on the occurrence of gallbladder disease.^ Human cholesterol 7$\alpha$-hydroxylase is the rate-limiting enzyme in bile acid synthesis. The results of an association study in both a random sample and a matched case/control sample showed that there is a significant association between cholesterol 7$\alpha$-hydroxylase gene variation and the occurrence of gallbladder disease in Mexican Americans males but not in females. These data have implicated a specific gene, 7$\alpha$-hydroxylase, in the etiology of gallbladder disease in this population.^ Finally, I asked whether the inferred major gene from complex segregation analysis is genetically linked to the cholesterol 7$\alpha$-hydroxylase gene. Three pedigrees predicted to be informative for linkage analysis by virtue of supporting the major gene hypothesis and having parents with informative genotypes and multiple offspring were selected for this linkage analysis. In each of these pedigrees, the recombination fractions maximized at 0 with a positive, albeit low, LOD score. The results of this linkage analysis provide preliminary and suggestive evidence that the cholesterol 7$\alpha$-hydroxylase gene and the inferred gallbladder disease susceptibility gene are genetically linked. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Asian International Input-Output (IO) Table that is compiled by Institute of Developing Economies-JETRO (IDE), was constructed in Isard type form. Thus, it required a lot of time to publish. In order to avoid this time-lag problem and establish a more simple compilation technique, this paper concentrates on verifying the possibility of using the Chenery-Moses type estimation technique. If possible, applying the Chenery-Moses instead of the Isard type would be effective for both impact and linkage analysis (except for some countries such as Malaysia and Singapore and some primary sectors. Using Chenery-Moses estimation method, production of the Asian International IO table can be reduced by two years. And more, this method might have the possibilities to be applied for updating exercise of Asian IO table.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have investigated physical distances and directions of transposition of the maize transposable element Ac in Arabidopsis thaliana. We prepared a transferred DNA (T-DNA) construct that carried a non-autonomous derivative of Ac with a site for cleavage by endonuclease I-SceI (designated dAc-I-RS element). Another cleavage site was also introduced into the T-DNA region outside dAc-I-RS. Three transgenic Arabidopsis plants were generated, each of which had a single copy of the T-DNA at a different chromosomal location. These transgenic plants were crossed with the Arabidopsis that carried the gene for Ac transposase and progeny in which dAc-I-RS had been transposed were isolated. After digestion of the genomic DNA of these progeny with endonuclease I-SceI, sizes of segment of DNA were determined by pulse-field gel electrophoresis. We also performed linkage analysis for the transposed elements and sites of mutations near the elements. Our results showed that 50% of all transposition events had occurred within 1,700 kb on the same chromosome, with 35% within 200 kb, and that the elements transposed in both directions on the chromosome with roughly equal probability. The data thus indicate that the Ac–Ds system is most useful for tagging of genes that are present within 200 kb of the chromosomal site of Ac in Arabidopsis. In addition, determination of the precise localization of the transposed dAc-I-RS element should definitely assist in map-based cloning of genes around insertion sites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Genetic mapping of traits and mutations in mammals is dependent upon linkage analysis. The resolution achieved by this method is related to the number of offspring that can be scored and position of crossovers near a gene. Higher precision mapping is obtained by expanding the collection of progeny from an appropriate cross, which in turn increases the number of potentially informative recombinants. A more efficient approach would be to increase the frequency of recombination, rather than the number of progeny. The anticancer drug cisplatin, which causes DNA strand breakage and is highly recombinogenic in some model organisms, was tested for its ability to induce germ-line recombination in mice. Males were exposed to cisplatin and mated at various times thereafter to monitor the number of crossovers inherited by offspring. We observed a striking increase on all three chromosomes examined and established a regimen that nearly doubled crossover frequency. The timing of the response indicated that the crossovers were induced at the early pachytene stage of meiosis I. The ability to increase recombination should facilitate genetic mapping and positional cloning in mice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bipolar mood disorder (BP) is a debilitating syndrome characterized by episodes of mania and depression. We designed a multistage study to detect all major loci predisposing to severe BP (termed BP-I) in two pedigrees drawn from the Central Valley of Costa Rica, where the population is largely descended from a few founders in the 16th–18th centuries. We considered only individuals with BP-I as affected and screened the genome for linkage with 473 microsatellite markers. We used a model for linkage analysis that incorporated a high phenocopy rate and a conservative estimate of penetrance. Our goal in this study was not to establish definitive linkage but rather to detect all regions possibly harboring major genes for BP-I in these pedigrees. To facilitate this aim, we evaluated the degree to which markers that were informative in our data set provided coverage of each genome region; we estimate that at least 94% of the genome has been covered, at a predesignated threshold determined through prior linkage simulation analyses. We report here the results of our genome screen for BP-I loci and indicate several regions that merit further study, including segments in 18q, 18p, and 11p, in which suggestive lod scores were observed for two or more contiguous markers. Isolated lod scores that exceeded our thresholds in one or both families also occurred on chromosomes 1, 2, 3, 4, 5, 7, 13, 15, 16, and 17. Interesting regions highlighted in this genome screen will be followed up using linkage disequilibrium (LD) methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Our preliminary family studies have suggested that some female first-degree relatives of women with polycystic ovary syndrome (PCOS) have hyperandrogenemia per se. It was our hypothesis that this may be a genetic trait and thus could represent a phenotype suitable for linkage analysis. To investigate this hypothesis, we examined 115 sisters of 80 probands with PCOS from unrelated families. PCOS was diagnosed by the combination of elevated serum androgen levels and ≤6 menses per year with the exclusion of secondary causes. The sisters were compared with 70 healthy age- and weight-comparable control women with regular menses, no clinical evidence of hyperandrogenemia, and normal glucose tolerance. Twenty-two percent of the sisters fulfilled diagnostic criteria for PCOS. In addition, 24% of the sisters had hyperandrogenemia and regular menstrual cycles. Circulating testosterone (T) and nonsex hormone-binding globulin-bound testosterone (uT) levels in both of these groups of sisters were significantly increased compared with unaffected sisters and control women (P < 0.0001 for both T and uT). Probands, sisters with PCOS, and hyperandrogenemic sisters had elevated serum luteinizing hormone levels compared with control women. We conclude that there is familial aggregation of hyperandrogenemia (with or without oligomenorrhea) in PCOS kindreds. In affected sisters, only one-half have oligomenorrhea and hyperandrogenemia characteristic of PCOS, whereas the remaining one-half have hyperandrogenemia per se. This familial aggregation of hyperandrogenemia in PCOS kindreds suggests that it is a genetic trait. We propose that hyperandrogenemia be used to assign affected status in linkage studies designed to identify PCOS genes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

X-linked lymphoproliferative syndrome (XLP) is an inherited immunodeficiency characterized by increased susceptibility to Epstein–Barr virus (EBV). In affected males, primary EBV infection leads to the uncontrolled proliferation of virus-containing B cells and reactive cytotoxic T cells, often culminating in the development of high-grade lymphoma. The XLP gene has been mapped to chromosome band Xq25 through linkage analysis and the discovery of patients harboring large constitutional genomic deletions. We describe here the presence of small deletions and intragenic mutations that specifically disrupt a gene named DSHP in 6 of 10 unrelated patients with XLP. This gene encodes a predicted protein of 128 amino acids composing a single SH2 domain with extensive homology to the SH2 domain of SHIP, an inositol polyphosphate 5-phosphatase that functions as a negative regulator of lymphocyte activation. DSHP is expressed in transformed T cell lines and is induced following in vitro activation of peripheral blood T lymphocytes. Expression of DSHP is restricted in vivo to lymphoid tissues, and RNA in situ hybridization demonstrates DSHP expression in activated T and B cell regions of reactive lymph nodes and in both T and B cell neoplasms. These observations confirm the identity of DSHP as the gene responsible for XLP, and suggest a role in the regulation of lymphocyte activation and proliferation. Induction of DSHP may sustain the immune response by interfering with SHIP-mediated inhibition of lymphocyte activation, while its inactivation in XLP patients results in a selective immunodeficiency to EBV.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The region of human chromosome 22q11 is prone to rearrangements. The resulting chromosomal abnormalities are involved in Velo-cardio-facial and DiGeorge syndromes (VCFS and DGS) (deletions), “cat eye” syndrome (duplications), and certain types of tumors (translocations). As a prelude to the development of mouse models for VCFS/DGS by generating targeted deletions in the mouse genome, we examined the organization of genes from human chromosome 22q11 in the mouse. Using genetic linkage analysis and detailed physical mapping, we show that genes from a relatively small region of human 22q11 are distributed on three mouse chromosomes (MMU6, MMU10, and MMU16). Furthermore, although the region corresponding to about 2.5 megabases of the VCFS/DGS critical region is located on mouse chromosome 16, the relative organization of the region is quite different from that in humans. Our results show that the instability of the 22q11 region is not restricted to humans but may have been present throughout evolution. The results also underscore the importance of detailed comparative mapping of genes in mice and humans as a prerequisite for the development of mouse models of human diseases involving chromosomal rearrangements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Genetic analysis of limiting quantities of genomic DNA play an important role in DNA forensics, paleoarcheology, genetic disease diagnosis, genetic linkage analysis, and genetic diversity studies. We have tested the ability of degenerate oligonucleotide primed polymerase chain reaction (DOP-PCR) to amplify picogram quantities of human genomic DNA for the purpose of increasing the amount of template for genotyping with microsatellite repeat markers. DNA was uniformly amplified at a large number of typable loci throughout the human genome with starting template DNAs from as little as 15 pg to as much as 400 ng. A much greater-fold enrichment was seen for the smaller genomic DOP-PCRs. All markers tested were amplified from starting genomic DNAs in the range of 0.6–40 ng with amplifications of 200- to 600-fold. The DOP-PCR-amplified genomic DNA was an excellent and reliable template for genotyping with microsatellites, which give distinct bands with no increase in stutter artifact on di-, tri-, and tetranucleotide repeats. There appears to be equal amplification of genomic DNA from 55 of 55 tested discrete microsatellites implying near complete coverage of the human genome. Thus, DOP-PCR appears to allow unbiased, hundreds-fold whole genome amplification of human genomic DNA for genotypic analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tuberous sclerosis is an autosomal dominant disorder characterized by the development of aberrant growths in many tissues and organs. Linkage analysis revealed two disease-determining genes on chromosome 9 and chromosome 16. The tuberous sclerosis complex gene-2 (TSC2) on chromosome 16 encodes the tumor suppressor protein tuberin. We have shown earlier that loss of TSC2 is sufficient to induce quiescent cells to enter the cell cycle. Here we show that TSC2-negative fibroblasts exhibit a shortened G1 phase. Although the expression of cyclin E, cyclin A, p21, or Cdc25A is unaffected, TSC2-negative cells express much lower amounts of the cyclin-dependent kinase (CDK) inhibitor p27 because of decreased protein stability. In TSC2 mutant cells the amount of p27 bound to CDK2 is diminished, accompanied with elevated kinase activity. Ectopic expression studies revealed that the aforementioned effects can be reverted by transfecting TSC2 in TSC2-negative cells. High ectopic levels of p27 have cell cycle inhibitory effects in TSC2-positive cells but not in TSC2-negative counterparts, although the latter still depend on CDK2 activity. Loss of TSC2 induces soft agar growth of fibroblasts, a process that cannot be inhibited by high levels of p27. Both phenotypes of TSC2-negative cells, their resistance to the activity of ectopic p27, and the instability of endogenous p27, could be explained by our observation that the nucleoprotein p27 is mislocated into the cytoplasm upon loss of TSC2. These findings provide insights into the molecular mechanism of how loss of TSC2 induces cell cycle entry and allow a better understanding of its tumor suppressor function.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although adaptive evolution is thought to depend primarily on mutations of small effect, major gene effects may underlie many of the important differences observed among species in nature. The Mexican axolotl (Ambystoma mexicanum) has a derived mode of development that is characterized by metamorphic failure (paedomorphosis), an adaptation for an entirely aquatic life cycle. By using an interspecific crossing design and genetic linkage analysis, a major quantitative trait locus for expression of metamorphosis was identified in a local map of amplified fragment length polymorphisms. These data are consistent with a major gene hypothesis for the evolution of paedomorphosis in A. mexicanum.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hd6 is a quantitative trait locus involved in rice photoperiod sensitivity. It was detected in backcross progeny derived from a cross between the japonica variety Nipponbare and the indica variety Kasalath. To isolate a gene at Hd6, we used a large segregating population for the high-resolution and fine-scale mapping of Hd6 and constructed genomic clone contigs around the Hd6 region. Linkage analysis with P1-derived artificial chromosome clone-derived DNA markers delimited Hd6 to a 26.4-kb genomic region. We identified a gene encoding the α subunit of protein kinase CK2 (CK2α) in this region. The Nipponbare allele of CK2α contains a premature stop codon, and the resulting truncated product is undoubtedly nonfunctional. Genetic complementation analysis revealed that the Kasalath allele of CK2α increases days-to-heading. Map-based cloning with advanced backcross progeny enabled us to identify a gene underlying a quantitative trait locus even though it exhibited a relatively small effect on the phenotype.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The tobacco N and Arabidopsis RPS2 genes, among several recently cloned disease-resistance genes, share highly conserved structure, a nucleotide-binding site (NBS). Using degenerate oligonucleotide primers for the NBS region of N and RPS2, we have amplified and cloned the NBS sequences from soybean. Each of these PCR-derived NBS clones detected low-or moderate-copy soybean DNA sequences and belongs to 1 of 11 different classes. Sequence analysis showed that all PCR clones encode three motifs (P-loop, kinase-2, and kinase-3a) of NBS nearly identical to those in N and RPS2. The intervening region between P-loop and kinase-3a of the 11 classes has high (26% average) amino acid sequence similarity to the N gene although not as high (19% average) to RPS2. These 11 classes represent a superfamily of NBS-containing soybean genes that are homologous to N and RPS2. Each class or subfamily was assessed for its positional association with known soybean disease-resistance genes through near-isogenic line assays, followed by linkage analysis in F2 populations using restriction fragment length polymorphisms. Five of the 11 subfamilies have thus far been mapped to the vicinity of known soybean genes for resistance to potyviruses (Rsv1 and Rpv), Phytophthora root rot (Rps1, Rps2, and Rps3), and powdery mildew (rmd). The conserved N- or RPS2-homologous NBS sequences and their positional associations with mapped soybean-resistance genes suggest that a number of the soybean disease-resistance genes may belong to this superfamily. The candidate subfamilies of NBS-containing genes identified by genetic mapping should greatly facilitate the molecular cloning of disease-resistance genes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

By using reverse transcription-coupled PCR on rat anterior pituitary RNA, we isolated a 285-bp cDNA coding for a novel subtilisin/kexin-like protein convertase (PC), called rat (r) PC7. By screening rat spleen and PC12 cell lambda gt11 cDNA libraries, we obtained a composite 3.5-kb full-length cDNA sequence of rPC7. The open reading frame codes for a prepro-PC with a 36-amino acid signal peptide, a 104-amino acid prosegment ending with a cleavable RAKR sequence, and a 747-amino acid type I membrane-bound glycoprotein, representing the mature form of this serine proteinase. Phylogenetic analysis suggests that PC7 represents the most divergent enzyme of the mammalian convertase family and that it is the closest member to the yeast convertases krp and kexin. Northern blot analyses demonstrated a widespread expression with the richest source of rPC7 mRNA being the colon and lymphoid-associated tissues. In situ hybridization revealed a distinctive tissue distribution that sometimes overlaps with that of furin, suggesting that PC7 has widespread proteolytic functions. The gene for PC7 (Pcsk7) was mapped to mouse chromosome 9 by linkage analysis of an interspecific backcross DNA panel.