923 resultados para Linear mixed effect models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Generalized linear mixed models with semiparametric random effects are useful in a wide variety of Bayesian applications. When the random effects arise from a mixture of Dirichlet process (MDP) model, normal base measures and Gibbs sampling procedures based on the Pólya urn scheme are often used to simulate posterior draws. These algorithms are applicable in the conjugate case when (for a normal base measure) the likelihood is normal. In the non-conjugate case, the algorithms proposed by MacEachern and Müller (1998) and Neal (2000) are often applied to generate posterior samples. Some common problems associated with simulation algorithms for non-conjugate MDP models include convergence and mixing difficulties. This paper proposes an algorithm based on the Pólya urn scheme that extends the Gibbs sampling algorithms to non-conjugate models with normal base measures and exponential family likelihoods. The algorithm proceeds by making Laplace approximations to the likelihood function, thereby reducing the procedure to that of conjugate normal MDP models. To ensure the validity of the stationary distribution in the non-conjugate case, the proposals are accepted or rejected by a Metropolis-Hastings step. In the special case where the data are normally distributed, the algorithm is identical to the Gibbs sampler.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clustered data analysis is characterized by the need to describe both systematic variation in a mean model and cluster-dependent random variation in an association model. Marginalized multilevel models embrace the robustness and interpretations of a marginal mean model, while retaining the likelihood inference capabilities and flexible dependence structures of a conditional association model. Although there has been increasing recognition of the attractiveness of marginalized multilevel models, there has been a gap in their practical application arising from a lack of readily available estimation procedures. We extend the marginalized multilevel model to allow for nonlinear functions in both the mean and association aspects. We then formulate marginal models through conditional specifications to facilitate estimation with mixed model computational solutions already in place. We illustrate this approach on a cerebrovascular deficiency crossover trial.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In evaluating the accuracy of diagnosis tests, it is common to apply two imperfect tests jointly or sequentially to a study population. In a recent meta-analysis of the accuracy of microsatellite instability testing (MSI) and traditional mutation analysis (MUT) in predicting germline mutations of the mismatch repair (MMR) genes, a Bayesian approach (Chen, Watson, and Parmigiani 2005) was proposed to handle missing data resulting from partial testing and the lack of a gold standard. In this paper, we demonstrate an improved estimation of the sensitivities and specificities of MSI and MUT by using a nonlinear mixed model and a Bayesian hierarchical model, both of which account for the heterogeneity across studies through study-specific random effects. The methods can be used to estimate the accuracy of two imperfect diagnostic tests in other meta-analyses when the prevalence of disease, the sensitivities and/or the specificities of diagnostic tests are heterogeneous among studies. Furthermore, simulation studies have demonstrated the importance of carefully selecting appropriate random effects on the estimation of diagnostic accuracy measurements in this scenario.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND In many resource-limited settings monitoring of combination antiretroviral therapy (cART) is based on the current CD4 count, with limited access to HIV RNA tests or laboratory diagnostics. We examined whether the CD4 count slope over 6 months could provide additional prognostic information. METHODS We analyzed data from a large multicohort study in South Africa, where HIV RNA is routinely monitored. Adult HIV-positive patients initiating cART between 2003 and 2010 were included. Mortality was analyzed in Cox models; CD4 count slope by HIV RNA level was assessed using linear mixed models. RESULTS About 44,829 patients (median age: 35 years, 58% female, median CD4 count at cART initiation: 116 cells/mm) were followed up for a median of 1.9 years, with 3706 deaths. Mean CD4 count slopes per week ranged from 1.4 [95% confidence interval (CI): 1.2 to 1.6] cells per cubic millimeter when HIV RNA was <400 copies per milliliter to -0.32 (95% CI: -0.47 to -0.18) cells per cubic millimeter with >100,000 copies per milliliter. The association of CD4 slope with mortality depended on current CD4 count: the adjusted hazard ratio (aHRs) comparing a >25% increase over 6 months with a >25% decrease was 0.68 (95% CI: 0.58 to 0.79) at <100 cells per cubic millimeter but 1.11 (95% CI: 0.78 to 1.58) at 201-350 cells per cubic millimeter. In contrast, the aHR for current CD4 count, comparing >350 with <100 cells per cubic millimeter, was 0.10 (95% CI: 0.05 to 0.20). CONCLUSIONS Absolute CD4 count remains a strong risk for mortality with a stable effect size over the first 4 years of cART. However, CD4 count slope and HIV RNA provide independently added to the model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: We examined the influence of clinical, radiologic, and echocardiographic characteristics on antithrombotic choice in patients with cryptogenic stroke (CS) and patent foramen ovale (PFO), hypothesizing that features suggestive of paradoxical embolism might lead to greater use of anticoagulation. Methods: The Risk of Paradoxical Embolism Study combined 12 databases to create the largest dataset of patients with CS and known PFO status. We used generalized linear mixed models with a random effect of component study to explore whether anticoagulation was preferentially selected based on the following: (1) younger age and absence of vascular risk factors, (2) “high-risk” echocardiographic features, and (3) neuroradiologic findings. Results: A total of 1,132 patients with CS and PFO treated with anticoagulation or antiplatelets were included. Overall, 438 participants (39%) were treated with anticoagulation with a range (by database) of 22% to 54%. Treatment choice was not influenced by age or vascular risk factors. However, neuroradiologic findings (superficial or multiple infarcts) and high-risk echocardiographic features (large shunts, shunt at rest, and septal hypermobility) were predictors of anticoagulation use. Conclusion: Both antithrombotic regimens are widely used for secondary stroke prevention in patients with CS and PFO. Radiologic and echocardiographic features were strongly associated with treatment choice, whereas conventional vascular risk factors were not. Prior observational studies are likely to be biased by confounding by indication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Non-steroidal anti-inflammatory drugs (NSAIDs) are the backbone of osteoarthritis pain management. We aimed to assess the effectiveness of different preparations and doses of NSAIDs on osteoarthritis pain in a network meta-analysis. METHODS For this network meta-analysis, we considered randomised trials comparing any of the following interventions: NSAIDs, paracetamol, or placebo, for the treatment of osteoarthritis pain. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) and the reference lists of relevant articles for trials published between Jan 1, 1980, and Feb 24, 2015, with at least 100 patients per group. The prespecified primary and secondary outcomes were pain and physical function, and were extracted in duplicate for up to seven timepoints after the start of treatment. We used an extension of multivariable Bayesian random effects models for mixed multiple treatment comparisons with a random effect at the level of trials. For the primary analysis, a random walk of first order was used to account for multiple follow-up outcome data within a trial. Preparations that used different total daily dose were considered separately in the analysis. To assess a potential dose-response relation, we used preparation-specific covariates assuming linearity on log relative dose. FINDINGS We identified 8973 manuscripts from our search, of which 74 randomised trials with a total of 58 556 patients were included in this analysis. 23 nodes concerning seven different NSAIDs or paracetamol with specific daily dose of administration or placebo were considered. All preparations, irrespective of dose, improved point estimates of pain symptoms when compared with placebo. For six interventions (diclofenac 150 mg/day, etoricoxib 30 mg/day, 60 mg/day, and 90 mg/day, and rofecoxib 25 mg/day and 50 mg/day), the probability that the difference to placebo is at or below a prespecified minimum clinically important effect for pain reduction (effect size [ES] -0·37) was at least 95%. Among maximally approved daily doses, diclofenac 150 mg/day (ES -0·57, 95% credibility interval [CrI] -0·69 to -0·46) and etoricoxib 60 mg/day (ES -0·58, -0·73 to -0·43) had the highest probability to be the best intervention, both with 100% probability to reach the minimum clinically important difference. Treatment effects increased as drug dose increased, but corresponding tests for a linear dose effect were significant only for celecoxib (p=0·030), diclofenac (p=0·031), and naproxen (p=0·026). We found no evidence that treatment effects varied over the duration of treatment. Model fit was good, and between-trial heterogeneity and inconsistency were low in all analyses. All trials were deemed to have a low risk of bias for blinding of patients. Effect estimates did not change in sensitivity analyses with two additional statistical models and accounting for methodological quality criteria in meta-regression analysis. INTERPRETATION On the basis of the available data, we see no role for single-agent paracetamol for the treatment of patients with osteoarthritis irrespective of dose. We provide sound evidence that diclofenac 150 mg/day is the most effective NSAID available at present, in terms of improving both pain and function. Nevertheless, in view of the safety profile of these drugs, physicians need to consider our results together with all known safety information when selecting the preparation and dose for individual patients. FUNDING Swiss National Science Foundation (grant number 405340-104762) and Arco Foundation, Switzerland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND There are concerns about the effects of in utero exposure to antiretroviral drugs (ARVs) on the development of HIV-exposed but uninfected (HEU) children. The aim of this study was to evaluate whether in utero exposure to ARVs is associated with lower birth weight/height and reduced growth during the first 2 years of life. METHODS This cohort study was conducted among HEU infants born between 1996 and 2010 in Tertiary children's hospital in Rio de Janeiro, Brazil. Weight was measured by mechanical scale, and height was measured by measuring board. Z-scores for weight-for-age (WAZ), length-for-age (LAZ) and weight-for-length were calculated. We modeled trajectories by mixed-effects models and adjusted for mother's age, CD4 cell count, viral load, year of birth and family income. RESULTS A total of 588 HEU infants were included of whom 155 (26%) were not exposed to ARVs, 114 (19%) were exposed early (first trimester) and 319 (54%) later. WAZ were lower among infants exposed early compared with infants exposed later: adjusted differences were -0.52 (95% confidence interval [CI]: -0.99 to -0.04, P = 0.02) at birth and -0.22 (95% CI: -0.47 to 0.04, P = 0.10) during follow-up. LAZ were lower during follow-up: -0.35 (95% CI: -0.63 to -0.08, P = 0.01). There were no differences in weight-for-length scores. Z-scores of infants exposed late during pregnancy were similar to unexposed infants. CONCLUSIONS In HEU children, early exposure to ARVs was associated with lower WAZ at birth and lower LAZ up to 2 years of life. Growth of HEU children needs to be monitored closely.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives. This paper seeks to assess the effect on statistical power of regression model misspecification in a variety of situations. ^ Methods and results. The effect of misspecification in regression can be approximated by evaluating the correlation between the correct specification and the misspecification of the outcome variable (Harris 2010).In this paper, three misspecified models (linear, categorical and fractional polynomial) were considered. In the first section, the mathematical method of calculating the correlation between correct and misspecified models with simple mathematical forms was derived and demonstrated. In the second section, data from the National Health and Nutrition Examination Survey (NHANES 2007-2008) were used to examine such correlations. Our study shows that comparing to linear or categorical models, the fractional polynomial models, with the higher correlations, provided a better approximation of the true relationship, which was illustrated by LOESS regression. In the third section, we present the results of simulation studies that demonstrate overall misspecification in regression can produce marked decreases in power with small sample sizes. However, the categorical model had greatest power, ranging from 0.877 to 0.936 depending on sample size and outcome variable used. The power of fractional polynomial model was close to that of linear model, which ranged from 0.69 to 0.83, and appeared to be affected by the increased degrees of freedom of this model.^ Conclusion. Correlations between alternative model specifications can be used to provide a good approximation of the effect on statistical power of misspecification when the sample size is large. When model specifications have known simple mathematical forms, such correlations can be calculated mathematically. Actual public health data from NHANES 2007-2008 were used as examples to demonstrate the situations with unknown or complex correct model specification. Simulation of power for misspecified models confirmed the results based on correlation methods but also illustrated the effect of model degrees of freedom on power.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Objectives: African American (AA) women are disproportionately affected with hypertension (HTN). The aim of this randomized controlled trial was to evaluate the effectiveness of a 6-week culturally-tailored educational intervention for AA women with primary HTN who lived in rural Northeast Texas. ^ Methods: Sixty AA women, 29 to 86 years (M 57.98 ±12.37) with primary HTN were recruited from four rural locations and randomized to intervention (n =30) and wait-list control groups ( n =30) to determine the effectiveness of the intervention on knowledge, attitudes, beliefs, social support, adherence to a hypertension regimen, and blood pressure (BP) control. Survey and BP measurements were collected at baseline, 3 weeks, 6 weeks (post intervention) and 6 months post intervention. Culturally-tailored educational classes were provided for 90 minutes once a week for 6 weeks in two local churches and a community center. The wait-list control group received usual care and were offered education at the conclusion of the data collection six months post-intervention. Linear mixed models were used to test for differences between the groups. ^ Results: A significant overall main effect (Time) was found for systolic blood pressure, F(3, 174) =11.104, p=.000, and diastolic blood pressure. F(3, 174) =4.781, p=.003 for both groups. Age was a significant covariate for diastolic blood pressure. F(1, 56) =6.798 p=.012. Participants 57 years or older (n=30) had lower diastolic BPS than participants younger than 57 (n=30). No significant differences were found between groups on knowledge, adherence, or attitudes. Participants with lower incomes had significantly less knowledge about HBP Prevention (r=.036, p=.006). ^ Conclusion: AA women who participated in a 6 week intervention program demonstrated a significant decrease in BP over a 6 month period regardless of whether they were in the intervention or control group. These rural AA women had a relatively good knowledge of HTN and reported an average level of compliance, compared to other populations. Satisfaction with the program was high and there was no attrition, suggesting that AA women will participate in research studies that are culturally tailored to them, held in familiar community locations, and conducted by a trusted person with whom they can identify. Future studies using a different program with larger sample sizes are warranted to try to decrease the high level of HTN-related complications in AA women. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mixed longitudinal designs are important study designs for many areas of medical research. Mixed longitudinal studies have several advantages over cross-sectional or pure longitudinal studies, including shorter study completion time and ability to separate time and age effects, thus are an attractive choice. Statistical methodology used in general longitudinal studies has been rapidly developing within the last few decades. Common approaches for statistical modeling in studies with mixed longitudinal designs have been the linear mixed-effects model incorporating an age or time effect. The general linear mixed-effects model is considered an appropriate choice to analyze repeated measurements data in longitudinal studies. However, common use of linear mixed-effects model on mixed longitudinal studies often incorporates age as the only random-effect but fails to take into consideration the cohort effect in conducting statistical inferences on age-related trajectories of outcome measurements. We believe special attention should be paid to cohort effects when analyzing data in mixed longitudinal designs with multiple overlapping cohorts. Thus, this has become an important statistical issue to address. ^ This research aims to address statistical issues related to mixed longitudinal studies. The proposed study examined the existing statistical analysis methods for the mixed longitudinal designs and developed an alternative analytic method to incorporate effects from multiple overlapping cohorts as well as from different aged subjects. The proposed study used simulation to evaluate the performance of the proposed analytic method by comparing it with the commonly-used model. Finally, the study applied the proposed analytic method to the data collected by an existing study Project HeartBeat!, which had been evaluated using traditional analytic techniques. Project HeartBeat! is a longitudinal study of cardiovascular disease (CVD) risk factors in childhood and adolescence using a mixed longitudinal design. The proposed model was used to evaluate four blood lipids adjusting for age, gender, race/ethnicity, and endocrine hormones. The result of this dissertation suggest the proposed analytic model could be a more flexible and reliable choice than the traditional model in terms of fitting data to provide more accurate estimates in mixed longitudinal studies. Conceptually, the proposed model described in this study has useful features, including consideration of effects from multiple overlapping cohorts, and is an attractive approach for analyzing data in mixed longitudinal design studies.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objectives of this dissertation were to evaluate health outcomes, quality improvement measures, and the long-term cost-effectiveness and impact on diabetes-related microvascular and macrovascular complications of a community health worker-led culturally tailored diabetes education and management intervention provided to uninsured Mexican Americans in an urban faith-based clinic. A prospective, randomized controlled repeated measures design was employed to compare the intervention effects between: (1) an intervention group (n=90) that participated in the Community Diabetes Education (CoDE) program along with usual medical care; and (2) a wait-listed comparison group (n=90) that received only usual medical care. Changes in hemoglobin A1c (HbA1c) and secondary outcomes (lipid status, blood pressure and body mass index) were assessed using linear mixed-models and an intention-to-treat approach. The CoDE group experienced greater reduction in HbA1c (-1.6%, p<.001) than the control group (-.9%, p<.001) over the 12 month study period. After adjusting for group-by-time interaction, antidiabetic medication use at baseline, changes made to the antidiabetic regime over the study period, duration of diabetes and baseline HbA1c, a statistically significant intervention effect on HbA1c (-.7%, p=.02) was observed for CoDE participants. Process and outcome quality measures were evaluated using multiple mixed-effects logistic regression models. Assessment of quality indicators revealed that the CoDE intervention group was significantly more likely to have received a dilated retinal examination than the control group, and 53% achieved a HbA1c below 7% compared with 38% of control group subjects. Long-term cost-effectiveness and impact on diabetes-related health outcomes were estimated through simulation modeling using the rigorously validated Archimedes Model. Over a 20 year time horizon, CoDE participants were forecasted to have less proliferative diabetic retinopathy, fewer foot ulcers, and reduced numbers of foot amputations than control group subjects who received usual medical care. An incremental cost-effectiveness ratio of $355 per quality-adjusted life-year gained was estimated for CoDE intervention participants over the same time period. The results from the three areas of program evaluation: impact on short-term health outcomes, quantification of improvement in quality of diabetes care, and projection of long-term cost-effectiveness and impact on diabetes-related health outcomes provide evidence that a community health worker can be a valuable resource to reduce diabetes disparities for uninsured Mexican Americans. This evidence supports formal integration of community health workers as members of the diabetes care team.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Persistence and abundance of species is determined by habitat availability and the ability to disperse and colonize habitats at contrasting spatial scales. Favourable habitat fragments are also heterogeneous in quality, providing differing opportunities for establishment and affecting the population dynamics of a species. Based on these principles, we suggest that the presence and abundance of epiphytes may reflect their dispersal ability, which is primarily determined by the spatial structure of host trees, but also by host quality. To our knowledge there has been no explicit test of the importance of host tree spatial pattern for epiphytes in Mediterranean forests. We hypothesized that performance and host occupancy in a favourable habitat depend on the spatial pattern of host trees, because this pattern affects the dispersal ability of each epiphyte and it also determines the availability of suitable sites for establishment. We tested this hypothesis using new point pattern analysis tools and generalized linear mixed models to investigate the spatial distribution and performance of the epiphytic lichen Lobaria pulmonaria, which inhabits two types of host trees (beeches and Iberian oaks). We tested the effects on L. pulmonaria distribution of tree size, spatial configuration, and host tree identity. We built a model including tree size, stand structure, and several neighbourhood predictors to understand the effect of host tree on L. pulmonaria. We also investigated the relative importance of spatial patterning on the presence and abundance of the species, independently of the host tree configuration. L. pulmonaria distribution was highly dependent on habitat quality for successful establishment, i.e., tree species identity, tree diameter, and several forest stand structure surrogates. For beech trees, tree diameter was the main factor influencing presence and cover of the lichen, although larger lichen-colonized trees were located close to focal trees, i.e., young trees. However, oak diameter was not an important factor, suggesting that bark roughness at all diameters favoured lichen establishment. Our results indicate that L. pulmonaria dispersal is not spatially restricted, but it is dependent on habitat quality. Furthermore, new spatial analysis tools suggested that L. pulmonaria cover exhibits a distinct pattern, although the spatial pattern of tree position and size was random.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Persistence and abundance of species is determined by habitat availability and the ability to disperse and colonize habitats at contrasting spatial scales. Favourable habitat fragments are also heterogeneous in quality, providing differing opportunities for establishment and affecting the population dynamics of a species. Based on these principles, we suggest that the presence and abundance of epiphytes may reflect their dispersal ability, which is primarily determined by the spatial structure of host trees, but also by host quality. To our knowledge there has been no explicit test of the importance of host tree spatial pattern for epiphytes in Mediterranean forests. We hypothesized that performance and host occupancy in a favourable habitat depend on the spatial pattern of host trees, because this pattern affects the dispersal ability of each epiphyte and it also determines the availability of suitable sites for establishment. We tested this hypothesis using new point pattern analysis tools and generalized linear mixed models to investigate the spatial distribution and performance of the epiphytic lichen Lobaria pulmonaria, which inhabits two types of host trees (beeches and Iberian oaks). We tested the effects on L. pulmonaria distribution of tree size, spatial configuration, and host tree identity. We built a model including tree size, stand structure, and several neighbourhood predictors to understand the effect of host tree on L. pulmonaria. We also investigated the relative importance of spatial patterning on the presence and abundance of the species, independently of the host tree configuration. L. pulmonaria distribution was highly dependent on habitat quality for successful establishment, i.e., tree species identity, tree diameter, and several forest stand structure surrogates. For beech trees, tree diameter was the main factor influencing presence and cover of the lichen, although larger lichen-colonized trees were located close to focal trees, i.e., young trees. However, oak diameter was not an important factor, suggesting that bark roughness at all diameters favoured lichen establishment. Our results indicate that L. pulmonaria dispersal is not spatially restricted, but it is dependent on habitat quality. Furthermore, new spatial analysis tools suggested that L. pulmonaria cover exhibits a distinct pattern, although the spatial pattern of tree position and size was random.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La predicción de energía eólica ha desempeñado en la última década un papel fundamental en el aprovechamiento de este recurso renovable, ya que permite reducir el impacto que tiene la naturaleza fluctuante del viento en la actividad de diversos agentes implicados en su integración, tales como el operador del sistema o los agentes del mercado eléctrico. Los altos niveles de penetración eólica alcanzados recientemente por algunos países han puesto de manifiesto la necesidad de mejorar las predicciones durante eventos en los que se experimenta una variación importante de la potencia generada por un parque o un conjunto de ellos en un tiempo relativamente corto (del orden de unas pocas horas). Estos eventos, conocidos como rampas, no tienen una única causa, ya que pueden estar motivados por procesos meteorológicos que se dan en muy diferentes escalas espacio-temporales, desde el paso de grandes frentes en la macroescala a procesos convectivos locales como tormentas. Además, el propio proceso de conversión del viento en energía eléctrica juega un papel relevante en la ocurrencia de rampas debido, entre otros factores, a la relación no lineal que impone la curva de potencia del aerogenerador, la desalineación de la máquina con respecto al viento y la interacción aerodinámica entre aerogeneradores. En este trabajo se aborda la aplicación de modelos estadísticos a la predicción de rampas a muy corto plazo. Además, se investiga la relación de este tipo de eventos con procesos atmosféricos en la macroescala. Los modelos se emplean para generar predicciones de punto a partir del modelado estocástico de una serie temporal de potencia generada por un parque eólico. Los horizontes de predicción considerados van de una a seis horas. Como primer paso, se ha elaborado una metodología para caracterizar rampas en series temporales. La denominada función-rampa está basada en la transformada wavelet y proporciona un índice en cada paso temporal. Este índice caracteriza la intensidad de rampa en base a los gradientes de potencia experimentados en un rango determinado de escalas temporales. Se han implementado tres tipos de modelos predictivos de cara a evaluar el papel que juega la complejidad de un modelo en su desempeño: modelos lineales autorregresivos (AR), modelos de coeficientes variables (VCMs) y modelos basado en redes neuronales (ANNs). Los modelos se han entrenado en base a la minimización del error cuadrático medio y la configuración de cada uno de ellos se ha determinado mediante validación cruzada. De cara a analizar la contribución del estado macroescalar de la atmósfera en la predicción de rampas, se ha propuesto una metodología que permite extraer, a partir de las salidas de modelos meteorológicos, información relevante para explicar la ocurrencia de estos eventos. La metodología se basa en el análisis de componentes principales (PCA) para la síntesis de la datos de la atmósfera y en el uso de la información mutua (MI) para estimar la dependencia no lineal entre dos señales. Esta metodología se ha aplicado a datos de reanálisis generados con un modelo de circulación general (GCM) de cara a generar variables exógenas que posteriormente se han introducido en los modelos predictivos. Los casos de estudio considerados corresponden a dos parques eólicos ubicados en España. Los resultados muestran que el modelado de la serie de potencias permitió una mejora notable con respecto al modelo predictivo de referencia (la persistencia) y que al añadir información de la macroescala se obtuvieron mejoras adicionales del mismo orden. Estas mejoras resultaron mayores para el caso de rampas de bajada. Los resultados también indican distintos grados de conexión entre la macroescala y la ocurrencia de rampas en los dos parques considerados. Abstract One of the main drawbacks of wind energy is that it exhibits intermittent generation greatly depending on environmental conditions. Wind power forecasting has proven to be an effective tool for facilitating wind power integration from both the technical and the economical perspective. Indeed, system operators and energy traders benefit from the use of forecasting techniques, because the reduction of the inherent uncertainty of wind power allows them the adoption of optimal decisions. Wind power integration imposes new challenges as higher wind penetration levels are attained. Wind power ramp forecasting is an example of such a recent topic of interest. The term ramp makes reference to a large and rapid variation (1-4 hours) observed in the wind power output of a wind farm or portfolio. Ramp events can be motivated by a broad number of meteorological processes that occur at different time/spatial scales, from the passage of large-scale frontal systems to local processes such as thunderstorms and thermally-driven flows. Ramp events may also be conditioned by features related to the wind-to-power conversion process, such as yaw misalignment, the wind turbine shut-down and the aerodynamic interaction between wind turbines of a wind farm (wake effect). This work is devoted to wind power ramp forecasting, with special focus on the connection between the global scale and ramp events observed at the wind farm level. The framework of this study is the point-forecasting approach. Time series based models were implemented for very short-term prediction, this being characterised by prediction horizons up to six hours ahead. As a first step, a methodology to characterise ramps within a wind power time series was proposed. The so-called ramp function is based on the wavelet transform and it provides a continuous index related to the ramp intensity at each time step. The underlying idea is that ramps are characterised by high power output gradients evaluated under different time scales. A number of state-of-the-art time series based models were considered, namely linear autoregressive (AR) models, varying-coefficient models (VCMs) and artificial neural networks (ANNs). This allowed us to gain insights into how the complexity of the model contributes to the accuracy of the wind power time series modelling. The models were trained in base of a mean squared error criterion and the final set-up of each model was determined through cross-validation techniques. In order to investigate the contribution of the global scale into wind power ramp forecasting, a methodological proposal to identify features in atmospheric raw data that are relevant for explaining wind power ramp events was presented. The proposed methodology is based on two techniques: principal component analysis (PCA) for atmospheric data compression and mutual information (MI) for assessing non-linear dependence between variables. The methodology was applied to reanalysis data generated with a general circulation model (GCM). This allowed for the elaboration of explanatory variables meaningful for ramp forecasting that were utilized as exogenous variables by the forecasting models. The study covered two wind farms located in Spain. All the models outperformed the reference model (the persistence) during both ramp and non-ramp situations. Adding atmospheric information had a noticeable impact on the forecasting performance, specially during ramp-down events. Results also suggested different levels of connection between the ramp occurrence at the wind farm level and the global scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mediterranean Dehesas are one of the European natural habitat types of Community interest (43/92/EEC Directive), associated to high diversity levels and producer of important goods and services. In this work, tree contribution and grazing influence over pasture alpha diversity in a Dehesa in Central Spain was studied. We analyzed Richness and Shannon-Wiener (SW) indexes on herbaceous layer under 16 holms oak trees (64 sampling units distributed in two directions and in two distances to the trunk) distributed in four different grazing management zones (depending on species and stocking rate). Floristic composition by species or morphospecies and species abundance were analyzed for each sample unit. Linear mixed models (LMM) and generalized linear mixed models (GLMMs) were used to study relationships between alpha diversity measures and independent factors. Edge crown influence showed the highest values of Richness and SW index. No significant differences were found between orientations under tree crown influence. Grazing management had a significant effect over Richness and SW measures, specially the grazing species (cattle or sheep). We preliminary quantify and analyze the interaction of tree stratum and grazing management over herbaceous diversity in a year of extreme climatic conditions.