971 resultados para Linear functions
Resumo:
Generalized linear mixed models (GLMMs) provide an elegant framework for the analysis of correlated data. Due to the non-closed form of the likelihood, GLMMs are often fit by computational procedures like penalized quasi-likelihood (PQL). Special cases of these models are generalized linear models (GLMs), which are often fit using algorithms like iterative weighted least squares (IWLS). High computational costs and memory space constraints often make it difficult to apply these iterative procedures to data sets with very large number of cases. This paper proposes a computationally efficient strategy based on the Gauss-Seidel algorithm that iteratively fits sub-models of the GLMM to subsetted versions of the data. Additional gains in efficiency are achieved for Poisson models, commonly used in disease mapping problems, because of their special collapsibility property which allows data reduction through summaries. Convergence of the proposed iterative procedure is guaranteed for canonical link functions. The strategy is applied to investigate the relationship between ischemic heart disease, socioeconomic status and age/gender category in New South Wales, Australia, based on outcome data consisting of approximately 33 million records. A simulation study demonstrates the algorithm's reliability in analyzing a data set with 12 million records for a (non-collapsible) logistic regression model.
Resumo:
The evolutionarily conserved Mre11/Rad50/Nbs1 (MRN) complex is involved in various aspects of meiosis. Whereas available evidence suggests that the Mre11 nuclease activity might be responsible for Spo11 removal in Saccharomyces cerevisiae, this has not been confirmed experimentally. This study demonstrates for the first time that Mre11 (Schizosaccharomyces pombe Rad32(Mre11)) nuclease activity is required for the removal of Rec12(Spo11). Furthermore, we show that the CtIP homologue Ctp1 is required for Rec12(Spo11) removal, confirming functional conservation between Ctp1(CtIP) and the more distantly related Sae2 protein from Saccharomyces cerevisiae. Finally, we show that the MRN complex is required for meiotic recombination, chromatin remodeling at the ade6-M26 recombination hot spot, and formation of linear elements (which are the equivalent of the synaptonemal complex found in other eukaryotes) but that all of these functions are proficient in a rad50S mutant, which is deficient for Rec12(Spo11) removal. These observations suggest that the conserved role of the MRN complex in these meiotic functions is independent of Rec12(Spo11) removal.
Resumo:
Localized short-echo-time (1)H-MR spectra of human brain contain contributions of many low-molecular-weight metabolites and baseline contributions of macromolecules. Two approaches to model such spectra are compared and the data acquisition sequence, optimized for reproducibility, is presented. Modeling relies on prior knowledge constraints and linear combination of metabolite spectra. Investigated was what can be gained by basis parameterization, i.e., description of basis spectra as sums of parametric lineshapes. Effects of basis composition and addition of experimentally measured macromolecular baselines were investigated also. Both fitting methods yielded quantitatively similar values, model deviations, error estimates, and reproducibility in the evaluation of 64 spectra of human gray and white matter from 40 subjects. Major advantages of parameterized basis functions are the possibilities to evaluate fitting parameters separately, to treat subgroup spectra as independent moieties, and to incorporate deviations from straightforward metabolite models. It was found that most of the 22 basis metabolites used may provide meaningful data when comparing patient cohorts. In individual spectra, sums of closely related metabolites are often more meaningful. Inclusion of a macromolecular basis component leads to relatively small, but significantly different tissue content for most metabolites. It provides a means to quantitate baseline contributions that may contain crucial clinical information.
Resumo:
Hierarchical linear growth model (HLGM), as a flexible and powerful analytic method, has played an increased important role in psychology, public health and medical sciences in recent decades. Mostly, researchers who conduct HLGM are interested in the treatment effect on individual trajectories, which can be indicated by the cross-level interaction effects. However, the statistical hypothesis test for the effect of cross-level interaction in HLGM only show us whether there is a significant group difference in the average rate of change, rate of acceleration or higher polynomial effect; it fails to convey information about the magnitude of the difference between the group trajectories at specific time point. Thus, reporting and interpreting effect sizes have been increased emphases in HLGM in recent years, due to the limitations and increased criticisms for statistical hypothesis testing. However, most researchers fail to report these model-implied effect sizes for group trajectories comparison and their corresponding confidence intervals in HLGM analysis, since lack of appropriate and standard functions to estimate effect sizes associated with the model-implied difference between grouping trajectories in HLGM, and also lack of computing packages in the popular statistical software to automatically calculate them. ^ The present project is the first to establish the appropriate computing functions to assess the standard difference between grouping trajectories in HLGM. We proposed the two functions to estimate effect sizes on model-based grouping trajectories difference at specific time, we also suggested the robust effect sizes to reduce the bias of estimated effect sizes. Then, we applied the proposed functions to estimate the population effect sizes (d ) and robust effect sizes (du) on the cross-level interaction in HLGM by using the three simulated datasets, and also we compared the three methods of constructing confidence intervals around d and du recommended the best one for application. At the end, we constructed 95% confidence intervals with the suitable method for the effect sizes what we obtained with the three simulated datasets. ^ The effect sizes between grouping trajectories for the three simulated longitudinal datasets indicated that even though the statistical hypothesis test shows no significant difference between grouping trajectories, effect sizes between these grouping trajectories can still be large at some time points. Therefore, effect sizes between grouping trajectories in HLGM analysis provide us additional and meaningful information to assess group effect on individual trajectories. In addition, we also compared the three methods to construct 95% confident intervals around corresponding effect sizes in this project, which handled with the uncertainty of effect sizes to population parameter. We suggested the noncentral t-distribution based method when the assumptions held, and the bootstrap bias-corrected and accelerated method when the assumptions are not met.^
Resumo:
The aim of this work is to solve a question raised for average sampling in shift-invariant spaces by using the well-known matrix pencil theory. In many common situations in sampling theory, the available data are samples of some convolution operator acting on the function itself: this leads to the problem of average sampling, also known as generalized sampling. In this paper we deal with the existence of a sampling formula involving these samples and having reconstruction functions with compact support. Thus, low computational complexity is involved and truncation errors are avoided. In practice, it is accomplished by means of a FIR filter bank. An answer is given in the light of the generalized sampling theory by using the oversampling technique: more samples than strictly necessary are used. The original problem reduces to finding a polynomial left inverse of a polynomial matrix intimately related to the sampling problem which, for a suitable choice of the sampling period, becomes a matrix pencil. This matrix pencil approach allows us to obtain a practical method for computing the compactly supported reconstruction functions for the important case where the oversampling rate is minimum. Moreover, the optimality of the obtained solution is established.
Resumo:
In this work, the algebraic properties of the local transition functions of elementary cellular automata (ECA) were analysed. Specifically, a classification of such cellular automata was done according to their algebraic degree, the balancedness, the resiliency, nonlinearity, the propagation criterion and the existence of non-zero linear structures. It is shown that there is not any ECA satisfying all properties at the same time.
Resumo:
The great developments that have occurred during the last few years in the finite element method and its applications has kept hidden other options for computation. The boundary integral element method now appears as a valid alternative and, in certain cases, has significant advantages. This method deals only with the boundary of the domain, while the F.E.M. analyses the whole domain. This has the following advantages: the dimensions of the problem to be studied are reduced by one, consequently simplifying the system of equations and preparation of input data. It is also possible to analyse infinite domains without discretization errors. These simplifications have the drawbacks of having to solve a full and non-symmetric matrix and some difficulties are incurred in the imposition of boundary conditions when complicated variations of the function over the boundary are assumed. In this paper a practical treatment of these problems, in particular boundary conditions imposition, has been carried out using the computer program shown below. Program SERBA solves general elastostatics problems in 2-dimensional continua using the boundary integral equation method. The boundary of the domain is discretized by line or elements over which the functions are assumed to vary linearly. Data (stresses and/or displacements) are introduced in the local co-ordinate system (element co-ordinates). Resulting stresses are obtained in local co-ordinates and displacements in a general system. The program has been written in Fortran ASCII and implemented on a 1108 Univac Computer. For 100 elements the core requirements are about 40 Kwords. Also available is a Fortran IV version (3 segments)implemented on a 21 MX Hewlett-Packard computer,using 15 Kwords.
Resumo:
Sequential estimation of the success probability p in inverse binomial sampling is considered in this paper. For any estimator pˆ , its quality is measured by the risk associated with normalized loss functions of linear-linear or inverse-linear form. These functions are possibly asymmetric, with arbitrary slope parameters a and b for pˆ
p , respectively. Interest in these functions is motivated by their significance and potential uses, which are briefly discussed. Estimators are given for which the risk has an asymptotic value as p→0, and which guarantee that, for any p∈(0,1), the risk is lower than its asymptotic value. This allows selecting the required number of successes, r, to meet a prescribed quality irrespective of the unknown p. In addition, the proposed estimators are shown to be approximately minimax when a/b does not deviate too much from 1, and asymptotically minimax as r→∞ when a=b.
Resumo:
Sequential estimation of the success probability $p$ in inverse binomial sampling is considered in this paper. For any estimator $\hatvap$, its quality is measured by the risk associated with normalized loss functions of linear-linear or inverse-linear form. These functions are possibly asymmetric, with arbitrary slope parameters $a$ and $b$ for $\hatvap < p$ and $\hatvap > p$ respectively. Interest in these functions is motivated by their significance and potential uses, which are briefly discussed. Estimators are given for which the risk has an asymptotic value as $p \rightarrow 0$, and which guarantee that, for any $p \in (0,1)$, the risk is lower than its asymptotic value. This allows selecting the required number of successes, $\nnum$, to meet a prescribed quality irrespective of the unknown $p$. In addition, the proposed estimators are shown to be approximately minimax when $a/b$ does not deviate too much from $1$, and asymptotically minimax as $\nnum \rightarrow \infty$ when $a=b$.
Resumo:
The linear instability of the three-dimensional boundary-layer over the HIFiRE-5 flight test geometry, i.e. a rounded-tip 2:1 elliptic cone, at Mach 7, has been analyzed through spatial BiGlobal analysis, in a effort to understand transition and accurately predict local heat loads on next-generation ight vehicles. The results at an intermediate axial section of the cone, Re x = 8x10 5, show three different families of spatially amplied linear global modes, the attachment-line and cross- ow modes known from earlier analyses, and a new global mode, peaking in the vicinity of the minor axis of the cone, termed \center-line mode". We discover that a sequence of symmetric and anti-symmetric centerline modes exist and, for the basic ow at hand, are maximally amplied around F* = 130kHz. The wavenumbers and spatial distribution of amplitude functions of the centerline modes are documented
Resumo:
The main objective of this work is to present a way to emulate some functions of the mammalian visual system and a model to analyze subjective sensations and visual illusions
Resumo:
Purely data-driven approaches for machine learning present difficulties when data are scarce relative to the complexity of the model or when the model is forced to extrapolate. On the other hand, purely mechanistic approaches need to identify and specify all the interactions in the problem at hand (which may not be feasible) and still leave the issue of how to parameterize the system. In this paper, we present a hybrid approach using Gaussian processes and differential equations to combine data-driven modeling with a physical model of the system. We show how different, physically inspired, kernel functions can be developed through sensible, simple, mechanistic assumptions about the underlying system. The versatility of our approach is illustrated with three case studies from motion capture, computational biology, and geostatistics.
Resumo:
Many computer vision and human-computer interaction applications developed in recent years need evaluating complex and continuous mathematical functions as an essential step toward proper operation. However, rigorous evaluation of this kind of functions often implies a very high computational cost, unacceptable in real-time applications. To alleviate this problem, functions are commonly approximated by simpler piecewise-polynomial representations. Following this idea, we propose a novel, efficient, and practical technique to evaluate complex and continuous functions using a nearly optimal design of two types of piecewise linear approximations in the case of a large budget of evaluation subintervals. To this end, we develop a thorough error analysis that yields asymptotically tight bounds to accurately quantify the approximation performance of both representations. It provides an improvement upon previous error estimates and allows the user to control the trade-off between the approximation error and the number of evaluation subintervals. To guarantee real-time operation, the method is suitable for, but not limited to, an efficient implementation in modern Graphics Processing Units (GPUs), where it outperforms previous alternative approaches by exploiting the fixed-function interpolation routines present in their texture units. The proposed technique is a perfect match for any application requiring the evaluation of continuous functions, we have measured in detail its quality and efficiency on several functions, and, in particular, the Gaussian function because it is extensively used in many areas of computer vision and cybernetics, and it is expensive to evaluate.
Resumo:
Non-linear behavior of soils during a seismic event has a predominant role in current site response analysis. Soil response analysis consistently indicates that the stress-strain relationship of soils is nonlinear and shows hysteresis. When focusing in forced response simulations, time integrations based on modal analysis are widely considered, however parametric analysis, non-linear behavior and complex damping functions make difficult the online use of standard discretization strategies, e.g. those based on the use of finite element. In this paper we propose a new harmonic analysis formulation, able to address forced response simulation of soils exhibiting their characteristic nonlinear behavior. The solution can be evaluated in real-time from the offline construction of a parametric solution of the associated linearized problem within the Proper Generalized Decomposition framework.