981 resultados para Liana cutting


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the ovary morphology of newly emerged ant queens of Atta sexdens rubropilosa was studied in whole mount preparations by confocal microscopy. The ovaries are composed of approximately 40 ovarioles, showing non-synchronic oocyte maturation. The terminal filament with clusters of undifferentiated cells was found at the distal end of the ovarioles. Next to this region is the germarium, composed of several elongated cystocytes interconnected by cytoplasmic bridges. The nurse cells (23-28 cells) result from asymmetric mitosis. Cytoskeleton analysis showed F-actin concentrated at the muscle cells of the external tunica and in fusomes inside the ovarioles. Microtubules were concentrated around the nuclei of the nurse and follicular cells. In contrast, the oocytes and the external tunica showed faint staining for tubulin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the one-dimensional cutting stock problem when demand is a random variable. The problem is formulated as a two-stage stochastic nonlinear program with recourse. The first stage decision variables are the number of objects to be cut according to a cutting pattern. The second stage decision variables are the number of holding or backordering items due to the decisions made in the first stage. The problem`s objective is to minimize the total expected cost incurred in both stages, due to waste and holding or backordering penalties. A Simplex-based method with column generation is proposed for solving a linear relaxation of the resulting optimization problem. The proposed method is evaluated by using two well-known measures of uncertainty effects in stochastic programming: the value of stochastic solution-VSS-and the expected value of perfect information-EVPI. The optimal two-stage solution is shown to be more effective than the alternative wait-and-see and expected value approaches, even under small variations in the parameters of the problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with the classical one-dimensional integer cutting stock problem, which consists of cutting a set of available stock lengths in order to produce smaller ordered items. This process is carried out in order to optimize a given objective function (e.g., minimizing waste). Our study deals with a case in which there are several stock lengths available in limited quantities. Moreover, we have focused on problems of low demand. Some heuristic methods are proposed in order to obtain an integer solution and compared with others. The heuristic methods are empirically analyzed by solving a set of randomly generated instances and a set of instances from the literature. Concerning the latter. most of the optimal solutions of these instances are known, therefore it was possible to compare the solutions. The proposed methods presented very small objective function value gaps. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Industrial production processes involving both lot-sizing and cutting stock problems are common in many industrial settings. However, they are usually treated in a separate way, which could lead to costly production plans. In this paper, a coupled mathematical model is formulated and a heuristic method based on Lagrangian relaxation is proposed. Computational results prove its effectiveness. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An important production programming problem arises in paper industries coupling multiple machine scheduling with cutting stocks. Concerning machine scheduling: how can the production of the quantity of large rolls of paper of different types be determined. These rolls are cut to meet demand of items. Scheduling that minimizes setups and production costs may produce rolls which may increase waste in the cutting process. On the other hand, the best number of rolls in the point of view of minimizing waste may lead to high setup costs. In this paper, coupled modeling and heuristic methods are proposed. Computational experiments are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate several two-dimensional guillotine cutting stock problems and their variants in which orthogonal rotations are allowed. We first present two dynamic programming based algorithms for the Rectangular Knapsack (RK) problem and its variants in which the patterns must be staged. The first algorithm solves the recurrence formula proposed by Beasley; the second algorithm - for staged patterns - also uses a recurrence formula. We show that if the items are not so small compared to the dimensions of the bin, then these algorithms require polynomial time. Using these algorithms we solved all instances of the RK problem found at the OR-LIBRARY, including one for which no optimal solution was known. We also consider the Two-dimensional Cutting Stock problem. We present a column generation based algorithm for this problem that uses the first algorithm above mentioned to generate the columns. We propose two strategies to tackle the residual instances. We also investigate a variant of this problem where the bins have different sizes. At last, we study the Two-dimensional Strip Packing problem. We also present a column generation based algorithm for this problem that uses the second algorithm above mentioned where staged patterns are imposed. In this case we solve instances for two-, three- and four-staged patterns. We report on some computational experiments with the various algorithms we propose in this paper. The results indicate that these algorithms seem to be suitable for solving real-world instances. We give a detailed description (a pseudo-code) of all the algorithms presented here, so that the reader may easily implement these algorithms. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present thesis focuses on characterisation of microstructure and the resulting mechanical and tribological properties of CVD and PVD coatings used in metal cutting applications. These thin and hard coatings are designed to improve the tribological performance of cutting tools which in metal cutting operations may result in improved cutting performance, lower energy consumption, lower production costs and lower impact on the environment.  In order to increase the understanding of the tribological behaviour of the coating systems a number of friction and wear tests have been performed and evaluated by post-test microscopy and surface analysis. Much of the work has focused on coating cohesive and adhesive strength, surface fatigue resistance, abrasive wear resistance and friction and wear behaviour under sliding contact and metal cutting conditions. The results show that the CVD deposition of accurate crystallographic phases, e.g. α-Al2O3 rather than κ-Al2O3, textures and multilayer structures can increase the wear resistance of Al2O3. However, the characteristics of the interfaces, e.g. topography as well as interfacial porosity, have a strong impact on coating adhesion and consequently on the resulting properties.  Through the deposition of well designed bonding and template layer structures the above problems may be eliminated. Also, the presence of macro-particles in PVD coatings may have a significant impact on the interfacial adhesive strength, increasing the tendency to coating spalling and lowering the surface fatigue resistance, as well as increasing the friction in sliding contacts. Finally, the CVD-Al2O3 coating topography influences the contact conditions in sliding as well as in metal cutting. In summary, the work illuminates the importance of understanding the relationships between deposition process parameters, composition and microstructure, resulting properties and tribological performance of CVD and PVD coatings and how this knowledge can be used to develop the coating materials of tomorrow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This licentiate thesis has the main focus on evaluation of the wear of coated and uncoated polycrystalline cubic boron nitride cutting tool used in cutting operations against hardened steel. And to exam the surface finish and integrity of the work material used. Harder work material, higher cutting speed and cost reductions result in the development of harder and more wear resistance cutting tools. Although PCBN cutting tools have been used in over 30 years, little work have been done on PVD coated PCBN cutting tools. Therefore hard turning and hard milling experiments with PVD coated and uncoated cutting tools have been performed and evaluated. The coatings used in the present study are TiSiN and TiAlN. The wear scar and surface integrity have been examined with help of several different characterization techniques, for example scanning electron microscopy and Auger electron spectroscopy.   The results showed that the PCBN cutting tools used displayed crater wear, flank wear and edge micro chipping. While the influence of the coating on the crater and flank wear was very small and the coating showed a high tendency to spalling. Scratch testing of coated PCBN showed that, the TiAlN coating resulted in major adhesive fractures. This displays the importance of understanding the effect of different types of lapping/grinding processes in the pre-treatment of hard and super hard substrate materials and the amount and type of damage that they can create. For the cutting tools used in turning, patches of a adhered layer, mainly consisting of FexOy were shown at both the crater and flank. And for the cutting tools used in milling a tribofilm consisting of SixOy covered the crater. A combination of tribochemical reactions, adhesive wear and mild abrasive wear is believed to control the flank and crater wear of the PCBN cutting tools. On a microscopic scale the difference phases of the PCBN cutting tool used in turning showed different wear characteristics. The machined surface of the work material showed a smooth surface with a Ra-value in the range of 100-200 nm for the turned surface and 100-150 nm for the milled surface. With increasing crater and flank wear in combination with edge chipping the machined surface becomes rougher and showed a higher Ra-value. For the cutting tools used in milling the tendency to micro edge chipping was significant higher when milling the tools steels showing a higher hard phase content and a lower heat conductivity resulting in higher mechanical and thermal stresses at the cutting edge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cutting angle method for global optimization was proposed in 1999 by Andramonov et al. (Appl. Math. Lett. 12 (1999) 95). Computer implementation of the resulting algorithm indicates that running time could be improved with appropriate modifications to the underlying mathematical description. In this article, we describe the initial algorithm and introduce a new one which we prove is significantly faster at each stage. Results of numerical experiments performed on a Pentium III 750 Mhz processor are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to predict molecular geometries has important applications in chemistry. Specific examples include the areas of protein space structure elucidation, the investigation of host–guest interactions, the understanding of properties of superconductors and of zeolites. This prediction of molecular geometries often depends on finding the global minimum or maximum of a function such as the potential energy. In this paper, we consider several well-known molecular conformation problems to which we apply a new method of deterministic global optimization called the cutting angle method. We demonstrate that this method is competitive with other global optimization techniques for these molecular conformation problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lower approximation of Lipschitz functions plays an important role in deterministic global optimization. This article examines in detail the lower piecewise linear approximation which arises in the cutting angle method. All its local minima can be explicitly enumerated, and a special data structure was designed to process them very efficiently, improving previous results by several orders of magnitude. Further, some geometrical properties of the lower approximation have been studied, and regions on which this function is linear have been identified explicitly. Connection to a special distance function and Voronoi diagrams was established. An application of these results is a black-box multivariate random number generator, based on acceptance-rejection approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cutting angle method (CAM) is a deterministic global optimization technique applicable to Lipschitz functions f: Rn → R. The method builds a sequence of piecewise linear lower approximations to the objective function f. The sequence of solutions to these relaxed problems converges to the global minimum of f. This article adapts CAM to the case of linear constraints on the feasible domain. We show how the relaxed problems are modified, and how the numerical efficiency of solving these problems can be preserved. A number of numerical experiments confirms the improved numerical efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examine efficient computer implementation of one method of deterministic global optimisation, the cutting angle method. In this method the objective function is approximated from values below the function with a piecewise linear auxiliary function. The global minimum of the objective function is approximated from the sequence of minima of this auxiliary function. Computing the minima of the auxiliary function is a combinatorial problem, and we show that it can be effectively parallelised. We discuss the improvements made to the serial implementation of the cutting angle method, and ways of distributing computations across multiple processors on parallel and cluster computers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many problems in chemistry depend on the ability to identify the global minimum or maximum of a function. Examples include applications in chemometrics, optimization of reaction or operating conditions, and non-linear least-squares analysis. This paper presents the results of the application of a new method of deterministic global optimization, called the cutting angle method (CAM), as applied to the prediction of molecular geometries. CAM is shown to be competitive with other global optimization techniques for several benchmark molecular conformation problem. CAM is a general method that can also be applied to other computational problems involving global minima, global maxima or finding the roots of nonlinear equations.