915 resultados para Learning tool


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two important challenges that teachers are currently facing are the sharing and the collaborative authoring of their learning design solutions, such as didactical units and learning materials. On the one hand, there are tools that can be used for the creation of design solutions and only some of them facilitate the co-edition. However, they do not incorporate mechanisms that support the sharing of the designs between teachers. On the other hand, there are tools that serve as repositories of educational resources but they do not enable the authoring of the designs. In this paper we present LdShake, a web tool whose novelty is focused on the combined support for the social sharing and co-edition of learning design solutions within communities of teachers. Teachers can create and share learning designs with other teachers using different access rights so that they can read, comment or co-edit the designs. Therefore, each design solution is associated to a group of teachers able to work on its definition, and another group that can only see the design. The tool is generic in that it allows the creation of designs based on any pedagogical approach. However, it can be particularized in instances providing pre-formatted designs structured according to a specific didactic method (such as Problem-Based Learning, PBL). A particularized LdShake instance has been used in the context of Human Biology studies where teams of teachers are required to work together in the design of PBL solutions. A controlled user study, that compares the use of a generic LdShake and a Moodle system, configured to enable the creation and sharing of designs, has been also carried out. The combined results of the real and controlled studies show that the social structure, and the commenting, co-edition and publishing features of LdShake provide a useful, effective and usable approach for facilitating teachers' teamwork.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Designs of CSCL (Computer Supported Collaborative Learning)activities should be flexible, effective and customizable toparticular learning situations. On the other hand, structureddesigns aim to create favourable conditions for learning. Thus,this paper proposes the collection of representative and broadlyaccepted (best practices) structuring techniques in collaborative learning. With the aim of establishing a conceptual common ground among collaborative learning practitioners and softwaredevelopers, and reusing the expertise that best practicesrepresent, the paper also proposes the formulation of these techniques as patterns: the so-called CLFPs (CollaborativeLearning Flow Patterns). To formalize these patterns, we havechosen the educational modelling language IMS Learning Design (IMS-LD). IMS-LD has the capability to specify many of the collaborative characteristics of the CLFPs. Nevertheless, the language bears limited capability for describing the services that mediate interactions within a learning activity and the specification of temporal or rotated roles. This analysis isdiscussed in the paper, as well as our approaches towards thedevelopment of a system capable of integrating tools using IMSLDscripts and a CLFP-based Learning Design authoring tool.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When applying a Collaborative Learning Flow Pattern (CLFP) to structure sequences of activities in real contexts, one of the tasks is to organize groups of students according to the constraints imposed by the pattern. Sometimes,unexpected events occurring at runtime force this pre-defined distribution to be changed. In such situations, an adjustment of the group structures to be adapted to the new context is needed. If the collaborative pattern is complex, this group redefinitionmight be difficult and time consuming to be carried out in real time. In this context, technology can help on notifying the teacher which incompatibilitiesbetween the actual context and the constraints imposed by the pattern. This chapter presents a flexible solution for supporting teachers in the group organization profiting from the intrinsic constraints defined by a CLFPs codified in IMS Learning Design. A prototype of a web-based tool for the TAPPS and Jigsaw CLFPs and the preliminary results of a controlled user study are alsopresented as a first step towards flexible technological systems to support grouping tasks in this context.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Closely related species may be very difficult to distinguish morphologically, yet sometimes morphology is the only reasonable possibility for taxonomic classification. Here we present learning-vector-quantization artificial neural networks as a powerful tool to classify specimens on the basis of geometric morphometric shape measurements. As an example, we trained a neural network to distinguish between field and root voles from Procrustes transformed landmark coordinates on the dorsal side of the skull, which is so similar in these two species that the human eye cannot make this distinction. Properly trained neural networks misclassified only 3% of specimens. Therefore, we conclude that the capacity of learning vector quantization neural networks to analyse spatial coordinates is a powerful tool among the range of pattern recognition procedures that is available to employ the information content of geometric morphometrics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study describes a task that combines random searching with goal directed navigation. The testing was conducted on a circular elevated open field (80 cm in diameter), with an unmarked target area (20 cm in diameter) in the center of 1 of the 4 quadrants. Whenever the rat entered the target area, the computerized tracking system released a pellet to a random point on the open field. Rats were able to learn the task under light and in total darkness, and on a stable or a rotating arena. Visual information was important in light, but idiothetic information became crucial in darkness. Learning of a new position was quicker under light than in total darkness on a rotating arena. The place preference task should make it possible to study place cells (PCs) when the rats use an allothetic (room frame) or idiothetic (arena frame) representation of space and to compare the behavioral response with the PCs' activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fascination is a project for design students, developed jointly by the Technical University of Catalonia (UPC) and the University of Technology Thonburi (KMUTT), which works with two groups of students, one group of participants in Spain and another group in Thailand where, hands-on activities, a range of technologies are used to prepare students for the lessons, through learning activities and content. This research paper presents the test of both a general model and a tool for measuring the participants’ experiences in a course that uses a blended learning methodology, with the aim of collecting empirical evidence to justify the effort of applying this methodology, based on the participants’ satisfaction. The procedure used in the conceptualization of the survey, the generation of topics, the collection of data, and the validation of the scale of various items are described here. The information, provided by the 26 people surveyed about the course and the virtual environment that was used, was analyzed to measure their perceptions and explore possible relations. Finally the conclusions of the research and the future work are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents multiple kernel learning (MKL) regression as an exploratory spatial data analysis and modelling tool. The MKL approach is introduced as an extension of support vector regression, where MKL uses dedicated kernels to divide a given task into sub-problems and to treat them separately in an effective way. It provides better interpretability to non-linear robust kernel regression at the cost of a more complex numerical optimization. In particular, we investigate the use of MKL as a tool that allows us to avoid using ad-hoc topographic indices as covariables in statistical models in complex terrains. Instead, MKL learns these relationships from the data in a non-parametric fashion. A study on data simulated from real terrain features confirms the ability of MKL to enhance the interpretability of data-driven models and to aid feature selection without degrading predictive performances. Here we examine the stability of the MKL algorithm with respect to the number of training data samples and to the presence of noise. The results of a real case study are also presented, where MKL is able to exploit a large set of terrain features computed at multiple spatial scales, when predicting mean wind speed in an Alpine region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scientific reporting and communication is a challenging topic for which traditional study programs do not offer structured learning activities on a regular basis. This paper reports on the development and implementation of a web application and associated learning activities that intend to raise the awareness of reporting and communication issues among students in forensic science and law. The project covers interdisciplinary case studies based on a library of written reports about forensic examinations. Special features of the web framework, in particular a report annotation tool, support the design of various individual and group learning activities that focus on the development of knowledge and competence in dealing with reporting and communication challenges in the students' future areas of professional activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper presents the Multiple Kernel Learning (MKL) approach as a modelling and data exploratory tool and applies it to the problem of wind speed mapping. Support Vector Regression (SVR) is used to predict spatial variations of the mean wind speed from terrain features (slopes, terrain curvature, directional derivatives) generated at different spatial scales. Multiple Kernel Learning is applied to learn kernels for individual features and thematic feature subsets, both in the context of feature selection and optimal parameters determination. An empirical study on real-life data confirms the usefulness of MKL as a tool that enhances the interpretability of data-driven models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use and manufacture of tools have been considered to be cognitively demanding and thus a possible driving factor in the evolution of intelligence. In this study, we tested the hypothesis that enhanced physical cognitive abilities evolved in conjunction with the use of tools, by comparing the performance of naturally tool-using and non-tool-using species in a suite of physical and general learning tasks. We predicted that the habitually tool-using species, New Caledonian crows and Galápagos woodpecker finches, should outperform their non-tool-using relatives, the small tree finches and the carrion crows in a physical problem but not in general learning tasks. We only found a divergence in the predicted direction for corvids. That only one of our comparisons supports the predictions under this hypothesis might be attributable to different complexities of tool-use in the two tool-using species. A critical evaluation is offered of the conceptual and methodological problems inherent in comparative studies on tool-related cognitive abilities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present the experimental results and evaluation of the SmartBox stimulation device in P2P e-learning system which is based on JXTA-Overlay. We also show the design and implementation of the SmartBox environment that is used for stimulating the learners motivation to increase the learning efficiency. The SmartBox is integrated with our P2P system as a useful tool for monitoring and controlling learners¿ activity. We found by experimental results that the SmartBox is an effective way to increase the learner¿s concentration. We also investigated the relation between learner¿s body movement, concentration, and amount of study. From the experimental results, we conclude that the use of SmartBox is an effective way to stimulate the learners in order to continue studying while maintaining the concentration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Verkostoitunut kansainvälinen tuotekehitys on tärkeä osa menestystä nykypäivän muuttuvassa yritysmaailmassa. Toimintojen tehostamiseksi myös projektitoiminnot on sopeutettava kansainväliseen toimintaympäristöön. Kilpailukyvyn säilyttämiseksi projektitoimintoja on lisäksi jatkuvasti tehostettava. Yhtenäkeinona nähdään projektioppiminen, jota voidaan edistää monin eri tavoin. Tässätyössä keskitytään projektitiedonhallinnan kehittämisen tuomiin oppimismahdollisuuksiin. Kirjallisuudessa kerrotaan, että projektitiedon jakaminen ja sen hyödyntäminen seuraavissa projekteissa on eräs projektioppimisen edellytyksistä. Tämäon otettu keskeiseksi näkökulmaksi tässä tutkimuksessa. Lisäksi tutkimusalueen rajaamiseksi työ tarkastelee erityisesti projektioppimista kansainvälisten tuotekehitysprojektien välillä. Työn tavoitteena on esitellä keskeisiä projektioppimisen haasteita ja etsiä konkreettinen ratkaisu vastaamaan näihin haasteisiin. Tuotekehitystoiminnot ja kansainvälinen hajautettu projektiorganisaatio kohtaavat lisäksi erityisiä haasteita, kuten tiedon hajautuneisuus, projektihenkilöstön vaihtuvuus, tiedon luottamuksellisuus ja maantieteelliset haasteet (esim. aikavyöhykkeet ja toimipisteen sijainti). Nämä erityishaasteet on otettu huomioon ratkaisua etsittäessä. Haasteisiin päädyttiin vastaamaan tietotekniikkapohjaisella ratkaisulla, joka suunniteltiin erityisesti huomioiden esimerkkiorganisaation tarpeet ja haasteet. Työssä tarkastellaan suunnitellun ratkaisun vaikutusta projektioppimiseen ja kuinka se vastaa havaittuihin haasteisiin. Tuloksissa huomattiin, että projektioppimista tapahtui, vaikka oppimista oli vaikea suoranaisesti huomata tutkimusorganisaation jäsenten keskuudessa. Projektioppimista voidaan kuitenkin sanoa tapahtuvan, jos projektitieto on helposti koko projektiryhmän saatavilla ja se on hyvin järjesteltyä. Muun muassa nämä ehdot täyttyivät. Projektioppiminen nähdään yleisesti haastavana kehitysalueena esimerkkiorganisaatiossa. Suuri osa tietämyksestä on niin sanottua hiljaistatietoa, jota on hankala tai mahdoton saattaa kirjalliseen muotoon. Näin olleen tiedon siirtäminen jää suurelta osin henkilökohtaisen vuorovaikutuksen varaan. Siitä huolimatta projektioppimista on mahdollista kehittää erilaisin toimintamallein ja menetelmin. Kehitys vaatii kuitenkin resursseja, pitkäjänteisyyttä ja aikaa. Monet muutokset voivat vaatia myös organisaatiokulttuurin muutoksen ja vaikuttamista organisaation jäseniin. Motivaatio, positiiviset mielikuvat ja selkeät strategiset tavoitteet luovat vakaan pohjan projektioppimisen kehittämiselle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper aims to present an ePortfolio project led for two years in a multilingual and interdisciplinary Master's program in public discourse and communication analysis offered by the Faculty of Arts of the University of Lausanne (Switzerland). Globally, the project - named Learn to communicate skills - offers a reflection about academic skills and their transferability to the professional world. More precisely, the aim of the project is to make students aware of the importance of reflexive learning to make their skills transferable to other contexts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTERMED training implies a three week course, integrated in the "primary care module" for medical students in the first master year at the school of medicine in Lausanne. INTERMED uses an innovative teaching method based on repetitive sequences of e-learning-based individual learning followed by collaborative learning activities in teams, named Team-based learning (TBL). The e-learning takes place in a web-based virtual learning environment using a series of interactive multimedia virtual patients. By using INTERMED students go through a complete medical encounter applying clinical reasoning and choosing the diagnostic and therapeutic approach. INTERMED offers an authentic experience in an engaging and safe environment where errors are allowed and without consequences.