907 resultados para Learning machine


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis presents a study of the Grid data access patterns in distributed analysis in the CMS experiment at the LHC accelerator. This study ranges from the deep analysis of the historical patterns of access to the most relevant data types in CMS, to the exploitation of a supervised Machine Learning classification system to set-up a machinery able to eventually predict future data access patterns - i.e. the so-called dataset “popularity” of the CMS datasets on the Grid - with focus on specific data types. All the CMS workflows run on the Worldwide LHC Computing Grid (WCG) computing centers (Tiers), and in particular the distributed analysis systems sustains hundreds of users and applications submitted every day. These applications (or “jobs”) access different data types hosted on disk storage systems at a large set of WLCG Tiers. The detailed study of how this data is accessed, in terms of data types, hosting Tiers, and different time periods, allows to gain precious insight on storage occupancy over time and different access patterns, and ultimately to extract suggested actions based on this information (e.g. targetted disk clean-up and/or data replication). In this sense, the application of Machine Learning techniques allows to learn from past data and to gain predictability potential for the future CMS data access patterns. Chapter 1 provides an introduction to High Energy Physics at the LHC. Chapter 2 describes the CMS Computing Model, with special focus on the data management sector, also discussing the concept of dataset popularity. Chapter 3 describes the study of CMS data access patterns with different depth levels. Chapter 4 offers a brief introduction to basic machine learning concepts and gives an introduction to its application in CMS and discuss the results obtained by using this approach in the context of this thesis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this thesis, a machine learning approach was used to develop a predictive model for residual methanol concentration in industrial formalin produced at the Akzo Nobel factory in Kristinehamn, Sweden. The MATLABTM computational environment supplemented with the Statistics and Machine LearningTM toolbox from the MathWorks were used to test various machine learning algorithms on the formalin production data from Akzo Nobel. As a result, the Gaussian Process Regression algorithm was found to provide the best results and was used to create the predictive model. The model was compiled to a stand-alone application with a graphical user interface using the MATLAB CompilerTM.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Developers strive to create innovative Artificial Intelligence (AI) behaviour in their games as a key selling point. Machine Learning is an area of AI that looks at how applications and agents can be programmed to learn their own behaviour without the need to manually design and implement each aspect of it. Machine learning methods have been utilised infrequently within games and are usually trained to learn offline before the game is released to the players. In order to investigate new ways AI could be applied innovatively to games it is wise to explore how machine learning methods could be utilised in real-time as the game is played, so as to allow AI agents to learn directly from the player or their environment. Two machine learning methods were implemented into a simple 2D Fighter test game to allow the agents to fully showcase their learned behaviour as the game is played. The methods chosen were: Q-Learning and an NGram based system. It was found that N-Grams and QLearning could significantly benefit game developers as they facilitate fast, realistic learning at run-time.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this work in progress study was to test the concept of recognising plants using images acquired by image sensors in a controlled noise-free environment. The presence of vegetation on railway trackbeds and embankments presents potential problems. Woody plants (e.g. Scots pine, Norway spruce and birch) often establish themselves on railway trackbeds. This may cause problems because legal herbicides are not effective in controlling them; this is particularly the case for conifers. Thus, if maintenance administrators knew the spatial position of plants along the railway system, it may be feasible to mechanically harvest them. Primary data were collected outdoors comprising around 700 leaves and conifer seedlings from 11 species. These were then photographed in a laboratory environment. In order to classify the species in the acquired image set, a machine learning approach known as Bag-of-Features (BoF) was chosen. Irrespective of the chosen type of feature extraction and classifier, the ability to classify a previously unseen plant correctly was greater than 85%. The maintenance planning of vegetation control could be improved if plants were recognised and localised. It may be feasible to mechanically harvest them (in particular, woody plants). In addition, listed endangered species growing on the trackbeds can be avoided. Both cases are likely to reduce the amount of herbicides, which often is in the interest of public opinion. Bearing in mind that natural objects like plants are often more heterogeneous within their own class rather than outside it, the results do indeed present a stable classification performance, which is a sound prerequisite in order to later take the next step to include a natural background. Where relevant, species can also be listed under the Endangered Species Act.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Interactions in mobile devices normally happen in an explicit manner, which means that they are initiated by the users. Yet, users are typically unaware that they also interact implicitly with their devices. For instance, our hand pose changes naturally when we type text messages. Whilst the touchscreen captures finger touches, hand movements during this interaction however are unused. If this implicit hand movement is observed, it can be used as additional information to support or to enhance the users’ text entry experience. This thesis investigates how implicit sensing can be used to improve existing, standard interaction technique qualities. In particular, this thesis looks into enhancing front-of-device interaction through back-of-device and hand movement implicit sensing. We propose the investigation through machine learning techniques. We look into problems on how sensor data via implicit sensing can be used to predict a certain aspect of an interaction. For instance, one of the questions that this thesis attempts to answer is whether hand movement during a touch targeting task correlates with the touch position. This is a complex relationship to understand but can be best explained through machine learning. Using machine learning as a tool, such correlation can be measured, quantified, understood and used to make predictions on future touch position. Furthermore, this thesis also evaluates the predictive power of the sensor data. We show this through a number of studies. In Chapter 5 we show that probabilistic modelling of sensor inputs and recorded touch locations can be used to predict the general area of future touches on touchscreen. In Chapter 7, using SVM classifiers, we show that data from implicit sensing from general mobile interactions is user-specific. This can be used to identify users implicitly. In Chapter 6, we also show that touch interaction errors can be detected from sensor data. In our experiment, we show that there are sufficient distinguishable patterns between normal interaction signals and signals that are strongly correlated with interaction error. In all studies, we show that performance gain can be achieved by combining sensor inputs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Le tecniche di Machine Learning sono molto utili in quanto consento di massimizzare l’utilizzo delle informazioni in tempo reale. Il metodo Random Forests può essere annoverato tra le tecniche di Machine Learning più recenti e performanti. Sfruttando le caratteristiche e le potenzialità di questo metodo, la presente tesi di dottorato affronta due casi di studio differenti; grazie ai quali è stato possibile elaborare due differenti modelli previsionali. Il primo caso di studio si è incentrato sui principali fiumi della regione Emilia-Romagna, caratterizzati da tempi di risposta molto brevi. La scelta di questi fiumi non è stata casuale: negli ultimi anni, infatti, in detti bacini si sono verificati diversi eventi di piena, in gran parte di tipo “flash flood”. Il secondo caso di studio riguarda le sezioni principali del fiume Po, dove il tempo di propagazione dell’onda di piena è maggiore rispetto ai corsi d’acqua del primo caso di studio analizzato. Partendo da una grande quantità di dati, il primo passo è stato selezionare e definire i dati in ingresso in funzione degli obiettivi da raggiungere, per entrambi i casi studio. Per l’elaborazione del modello relativo ai fiumi dell’Emilia-Romagna, sono stati presi in considerazione esclusivamente i dati osservati; a differenza del bacino del fiume Po in cui ai dati osservati sono stati affiancati anche i dati di previsione provenienti dalla catena modellistica Mike11 NAM/HD. Sfruttando una delle principali caratteristiche del metodo Random Forests, è stata stimata una probabilità di accadimento: questo aspetto è fondamentale sia nella fase tecnica che in fase decisionale per qualsiasi attività di intervento di protezione civile. L'elaborazione dei dati e i dati sviluppati sono stati effettuati in ambiente R. Al termine della fase di validazione, gli incoraggianti risultati ottenuti hanno permesso di inserire il modello sviluppato nel primo caso studio all’interno dell’architettura operativa di FEWS.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Clinical and omics data are a promising field of application for machine learning techniques even though these methods are not yet systematically adopted in healthcare institutions. Despite artificial intelligence has proved successful in terms of prediction of pathologies or identification of their causes, the systematic adoption of these techniques still presents challenging issues due to the peculiarities of the analysed data. The aim of this thesis is to apply machine learning algorithms to both clinical and omics data sets in order to predict a patient's state of health and get better insights on the possible causes of the analysed diseases. In doing so, many of the arising issues when working with medical data will be discussed while possible solutions will be proposed to make machine learning provide feasible results and possibly become an effective and reliable support tool for healthcare systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this thesis project is to automatically localize HCC tumors in the human liver and subsequently predict if the tumor will undergo microvascular infiltration (MVI), the initial stage of metastasis development. The input data for the work have been partially supplied by Sant'Orsola Hospital and partially downloaded from online medical databases. Two Unet models have been implemented for the automatic segmentation of the livers and the HCC malignancies within it. The segmentation models have been evaluated with the Intersection-over-Union and the Dice Coefficient metrics. The outcomes obtained for the liver automatic segmentation are quite good (IOU = 0.82; DC = 0.35); the outcomes obtained for the tumor automatic segmentation (IOU = 0.35; DC = 0.46) are, instead, affected by some limitations: it can be state that the algorithm is almost always able to detect the location of the tumor, but it tends to underestimate its dimensions. The purpose is to achieve the CT images of the HCC tumors, necessary for features extraction. The 14 Haralick features calculated from the 3D-GLCM, the 120 Radiomic features and the patients' clinical information are collected to build a dataset of 153 features. Now, the goal is to build a model able to discriminate, based on the features given, the tumors that will undergo MVI and those that will not. This task can be seen as a classification problem: each tumor needs to be classified either as “MVI positive” or “MVI negative”. Techniques for features selection are implemented to identify the most descriptive features for the problem at hand and then, a set of classification models are trained and compared. Among all, the models with the best performances (around 80-84% ± 8-15%) result to be the XGBoost Classifier, the SDG Classifier and the Logist Regression models (without penalization and with Lasso, Ridge or Elastic Net penalization).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In questa tesi vengono discusse le principali tecniche di machine learning riguardanti l'inferenza di tipo nei linguaggi tipati dinamicamente come Python. In aggiunta è stato creato un dataset di progetti Python per l'addestramento di modelli capaci di analizzare il codice

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The dissertation starts by providing a description of the phenomena related to the increasing importance recently acquired by satellite applications. The spread of such technology comes with implications, such as an increase in maintenance cost, from which derives the interest in developing advanced techniques that favor an augmented autonomy of spacecrafts in health monitoring. Machine learning techniques are widely employed to lay a foundation for effective systems specialized in fault detection by examining telemetry data. Telemetry consists of a considerable amount of information; therefore, the adopted algorithms must be able to handle multivariate data while facing the limitations imposed by on-board hardware features. In the framework of outlier detection, the dissertation addresses the topic of unsupervised machine learning methods. In the unsupervised scenario, lack of prior knowledge of the data behavior is assumed. In the specific, two models are brought to attention, namely Local Outlier Factor and One-Class Support Vector Machines. Their performances are compared in terms of both the achieved prediction accuracy and the equivalent computational cost. Both models are trained and tested upon the same sets of time series data in a variety of settings, finalized at gaining insights on the effect of the increase in dimensionality. The obtained results allow to claim that both models, combined with a proper tuning of their characteristic parameters, successfully comply with the role of outlier detectors in multivariate time series data. Nevertheless, under this specific context, Local Outlier Factor results to be outperforming One-Class SVM, in that it proves to be more stable over a wider range of input parameter values. This property is especially valuable in unsupervised learning since it suggests that the model is keen to adapting to unforeseen patterns.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of TinyML is to bring the capability of Machine Learning to ultra-low-power devices, typically under a milliwatt, and with this it breaks the traditional power barrier that prevents the widely distributed machine intelligence. TinyML allows greater reactivity and privacy by conducting inference on the computer and near-sensor while avoiding the energy cost associated with wireless communication, which is far higher at this scale than that of computing. In addition, TinyML’s efficiency makes a class of smart, battery-powered, always-on applications that can revolutionize the collection and processing of data in real time. This emerging field, which is the end of a lot of innovation, is ready to speed up its growth in the coming years. In this thesis, we deploy three model on a microcontroller. For the model, datasets are retrieved from an online repository and are preprocessed as per our requirement. The model is then trained on the split of preprocessed data at its best to get the most accuracy out of it. Later the trained model is converted to C language to make it possible to deploy on the microcontroller. Finally, we take step towards incorporating the model into the microcontroller by implementing and evaluating an interface for the user to utilize the microcontroller’s sensors. In our thesis, we will have 4 chapters. The first will give us an introduction of TinyML. The second chapter will help setup the TinyML Environment. The third chapter will be about a major use of TinyML in Wake Word Detection. The final chapter will deal with Gesture Recognition in TinyML.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The final goal of the thesis should be a real-world application in the production test data environment. This includes the pre-processing of the data, building models and visualizing the results. To do this, different machine learning models, outlier prediction oriented, should be investigated using a real dataset. Finally, the different outlier prediction algorithms should be compared, and their performance discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Il riconoscimento delle condizioni del manto stradale partendo esclusivamente dai dati raccolti dallo smartphone di un ciclista a bordo del suo mezzo è un ambito di ricerca finora poco esplorato. Per lo sviluppo di questa tesi è stata sviluppata un'apposita applicazione, che combinata a script Python permette di riconoscere differenti tipologie di asfalto. L’applicazione raccoglie i dati rilevati dai sensori di movimento integrati nello smartphone, che registra i movimenti mentre il ciclista è alla guida del suo mezzo. Lo smartphone è fissato in un apposito holder fissato sul manubrio della bicicletta e registra i dati provenienti da giroscopio, accelerometro e magnetometro. I dati sono memorizzati su file CSV, che sono elaborati fino ad ottenere un unico DataSet contenente tutti i dati raccolti con le features estratte mediante appositi script Python. A ogni record sarà assegnato un cluster deciso in base ai risultati prodotti da K-means, risultati utilizzati in seguito per allenare algoritmi Supervised. Lo scopo degli algoritmi è riconoscere la tipologia di manto stradale partendo da questi dati. Per l’allenamento, il DataSet è stato diviso in due parti: il training set dal quale gli algoritmi imparano a classificare i dati e il test set sul quale gli algoritmi applicano ciò che hanno imparato per dare in output la classificazione che ritengono idonea. Confrontando le previsioni degli algoritmi con quello che i dati effettivamente rappresentano si ottiene la misura dell’accuratezza dell’algoritmo.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Although the debate of what data science is has a long history and has not reached a complete consensus yet, Data Science can be summarized as the process of learning from data. Guided by the above vision, this thesis presents two independent data science projects developed in the scope of multidisciplinary applied research. The first part analyzes fluorescence microscopy images typically produced in life science experiments, where the objective is to count how many marked neuronal cells are present in each image. Aiming to automate the task for supporting research in the area, we propose a neural network architecture tuned specifically for this use case, cell ResUnet (c-ResUnet), and discuss the impact of alternative training strategies in overcoming particular challenges of our data. The approach provides good results in terms of both detection and counting, showing performance comparable to the interpretation of human operators. As a meaningful addition, we release the pre-trained model and the Fluorescent Neuronal Cells dataset collecting pixel-level annotations of where neuronal cells are located. In this way, we hope to help future research in the area and foster innovative methodologies for tackling similar problems. The second part deals with the problem of distributed data management in the context of LHC experiments, with a focus on supporting ATLAS operations concerning data transfer failures. In particular, we analyze error messages produced by failed transfers and propose a Machine Learning pipeline that leverages the word2vec language model and K-means clustering. This provides groups of similar errors that are presented to human operators as suggestions of potential issues to investigate. The approach is demonstrated on one full day of data, showing promising ability in understanding the message content and providing meaningful groupings, in line with previously reported incidents by human operators.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the last decade, manufacturing companies have been facing two significant challenges. First, digitalization imposes adopting Industry 4.0 technologies and allows creating smart, connected, self-aware, and self-predictive factories. Second, the attention on sustainability imposes to evaluate and reduce the impact of the implemented solutions from economic and social points of view. In manufacturing companies, the maintenance of physical assets assumes a critical role. Increasing the reliability and the availability of production systems leads to the minimization of systems’ downtimes; In addition, the proper system functioning avoids production wastes and potentially catastrophic accidents. Digitalization and new ICT technologies have assumed a relevant role in maintenance strategies. They allow assessing the health condition of machinery at any point in time. Moreover, they allow predicting the future behavior of machinery so that maintenance interventions can be planned, and the useful life of components can be exploited until the time instant before their fault. This dissertation provides insights on Predictive Maintenance goals and tools in Industry 4.0 and proposes a novel data acquisition, processing, sharing, and storage framework that addresses typical issues machine producers and users encounter. The research elaborates on two research questions that narrow down the potential approaches to data acquisition, processing, and analysis for fault diagnostics in evolving environments. The research activity is developed according to a research framework, where the research questions are addressed by research levers that are explored according to research topics. Each topic requires a specific set of methods and approaches; however, the overarching methodological approach presented in this dissertation includes three fundamental aspects: the maximization of the quality level of input data, the use of Machine Learning methods for data analysis, and the use of case studies deriving from both controlled environments (laboratory) and real-world instances.