966 resultados para Laser de Er:YAG
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Odontologia - FOAR
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
In this study we compared the microleakage of conventional glass ionomer cement (GIC) restorations following the use of different methods of root caries removal. In vitro root caries were induced in 75 human root dentin samples that were divided in five groups of 15 each according to the method used for caries removal: in group 1 spherical carbide burs at low speed were used, in group 2 a hand-held excavator was used, and in groups 3 to 5 an Er,Cr:YSGG laser was used at 2.25 W, 40.18 J/cm(2) (group 3), 2.50 W, 44.64 J/cm(2) (group 4) and 2.75 W, 49.11 J/cm(2) (group 5). The air/water cooling during irradiation was set to 55%/65% respectively. All cavities were filled with GIC. Five samples from each group were evaluated by scanning electron microscopy (SEM) and the other ten samples were thermocycled and submitted to a microleakage test. The data obtained were compared by ANOVA followed by Fisher's test (pa parts per thousand currency sign0.05). Group 4 showed the lowest microleakage index (56.65 6.30; p < 0.05). There were no significant differences among the other groups. On SEM images samples of groups 1 and 2 showed a more regular interface than the irradiated samples. Demineralized dentin below the restoration was observed, that was probably affected dentin. Group 4 showed the lowest microleakage values compared to the other experimental groups, so under the conditions of the present study the method that provided the lowest microleakage was the Er,Cr:YSGG laser with a power output of 2.5 W yielding an energy density of 44.64 J/cm(2).
Resumo:
Three different fissure preparation procedures were tested and compared to the non-invasive approach using a conventional unfilled sealant and a flowable composite. Eighty permanent molars were selected and divided into 4 groups of 20 teeth each. All the teeth were split into 2 halves, and the exposed fissures were photographed under a microscope (35x) before and after being prepared using the following methods: (I) Er:YAG laser (KEY Laser, KaVo) 600 mJ pulse energy, 6 Hz; (II) diamond bur; (III) Er: YAG laser (KEY Laser, KaVo) 200 mJ pulse energy, 4 Hz; (IV) Control group: Powder jet cleaner (Prophyflex, KaVo, Germany). The pre-and postimages were superimposed in order to evaluate the amount of hard tissue removed. Ten teeth in each group were then acid etched and sealed with an unfilled sealant (Delton opaque, Dentsply), while the remaining 10 teeth were acid etched, primed and bonded (Prime ; Bond NT, Dentsply) and sealed with a flowable composite (X-flow, DeTrey, Dentsply). Material penetration and microleakage were evaluated after thermocycling (5000 cycles) and staining with methylene blue 5%. ANOVA and Mann-Whitney tests were applied for statistical analysis. The laser 600 mJ and bur eliminated the greatest amount of hard tissue. The control teeth presented the least microleakage when sealed with Delton or X-flow. A correlation between material penetration and microleakage could not be statistically confirmed. Mechanical preparation prior to fissure sealing did not enhance the final performance of the sealant.
Resumo:
This in vitro study aimed to assess the speed and caries removal effectiveness of four different new and conventional dentine excavation methods. Eighty deciduous molars were assigned to four groups. Teeth were sectioned longitudinally through the lesion centre. Images of one half per tooth were captured by light microscope and confocal laser scanning microscopy (CLSM) to assess the caries extension. The halves were then reassembled and caries removed using round carbide bur (group 1), Er:YAG laser (group 2), hand excavator (group 3) and a polymer bur (group 4). The time needed for the whole excavation in each tooth was registered. After excavation, the halves were photographed by light microscope. Caries extension obtained from CLSM images were superimposed on the post-excavation images, allowing comparison between caries extension and removal. The regions where caries and preparation limits coincided, as well as the areas of over- and underpreparation, were measured. Steel bur was the fastest method, followed by the polymer bur, hand excavator and laser. Steel bur exhibited also the largest overpreparation area, followed by laser, hand excavator and polymer bur. The largest underpreparation area was found using polymer bur, followed by laser, hand excavator and steel bur. Hand excavator presented the longest coincidence line, followed by polymer and steel burs and laser. Overall, hand excavator seemed to be the most suitable method for carious dentine excavation in deciduous teeth, combining good excavation time with effective caries removal.
Resumo:
The aim of the study was to compare fissure sealant quality after mechanical conditioning of erbium-doped yttrium aluminium garnet (Er:YAG) laser or air abrasion prior to chemical conditioning of phosphoric acid etching or of a self-etch adhesive. Twenty-five permanent molars were initially divided into three groups: control group (n = 5), phosphoric acid etching; test group 1 (n = 10), air abrasion; and test group 2, (n = 10) Er:YAG laser. After mechanical conditioning, the test group teeth were sectioned buccolingually and the occlusal surface of one half tooth (equal to one sample) was acid etched, while a self-etch adhesive was applied on the other half. The fissure system of each sample was sealed, thermo-cycled and immersed in 5% methylene dye for 24 h. Each sample was sectioned buccolingually, and one slice was analysed microscopically. Using specialized software microleakage, unfilled margin, sealant failure and unfilled area proportions were calculated. A nonparametric ANOVA model was applied to compare the Er:YAG treatment with that of air abrasion and the self-etch adhesive with phosphoric acid (α = 0.05). Test groups were compared to the control group using Wilcoxon rank sum tests (α = 0.05). The control group displayed significantly lower microleakage but higher unfilled area proportions than the Er:YAG laser + self-etch adhesive group and displayed significantly higher unfilled margin and unfilled area proportions than the air-abrasion + self-etch adhesive group. There was no statistically significant difference in the quality of sealants applied in fissures treated with either Er:YAG laser or air abrasion prior to phosphoric acid etching, nor in the quality of sealants applied in fissures treated with either self-etch adhesive or phosphoric acid following Er:YAG or air-abrasion treatment.
Resumo:
In this work we have realized plasma diagnosis produced by Laser (LPP), by means of emission spectroscopy in a Laser Shock Processing (LSP). The LSP has been proposed as an alternative technology, competitive with classical surface treatments. The ionic species present in the plasma together with electron density and its temperature provide significant indicators of the degree of surface effect of the treated material. In order to analyze these indicators, we have realized spectroscopic studies of optical emission in the laser-generated plasmas in different situations. We have worked focusing on an aluminum sample (Al2024) in air and/or in LSP conditions (water flow) a Q-switched laser of Nd:YAG (λ = 1.06 μm, 10 ns of pulse duration, running at 10 Hz repetition rate). The pulse energy was set at 2,5 J per pulse. The electron density has been measured using, in every case, the Stark broadening of H Balmer α line (656.27 nm). In the case of the air, this measure has been contrasted with the value obtained with the line of 281.62 nm of Al II. Special attention has been paid to the self-absorption of the spectral lines used. The measures were realized with different delay times after the pulse of the laser (1–8 μs) and with a time window of 1 μs. In LSP the electron density obtained was between 1017 cm−3 for the shortest delays (4–6 μs), and 1016 cm−3 for the greatest delays (7,8 μs).
Resumo:
研究了平均功率超过30 W的稳定高效全固态绿光激光器,分析得出影响全固态腔内倍频激光器倍频效率和输出稳定性的主要因素是倍频晶体局部温升造成的相位失配和热透镜效应,采用温度梯度补偿控温法对大尺寸倍频晶体进行温度控制,降低激光器工作中倍频晶体内外温度梯度从而有效地克服因晶体局部温升造成的倍频相位匹配角失配和热透镜效应。采用三条60 W的半导体激光二极管阵列板条侧面抽运Nd:YAG激光增益介质棒,采用声光调Q,平凹直腔和腔内倍频结构配合温度梯度补偿控温法对大尺寸倍频晶体进行温度控制,得到了稳定高效的532 nm
Resumo:
Neste trabalho realizou-se a síntese e caracterização de novos derivados 2- (2’-hidroxifenil)benzazólicos. Estas moléculas apresentam um bom rendimento quântico de fluorescência, um grande deslocamento de Stokes (> 150 nm) e elevadas estabilidades térmica e fotofísica devido a um mecanismo de transferência protônica intramolecular que ocorre no estado excitado (TPIEE). Estes derivados contêm grupos funcionais suscetíveis a sofrer reações de polimerização com monômeros acrílicos e grupos trietoxissilanos capazes de ligarem-se covalentemente a polímeros inorgânicos como sílicas e zeolitas, com interesse na geração de materiais fotossensíveis. Estes fluoróforos apresentam bandas de absorção na região entre 300 - 360 nm do espectro, justamente onde se localizam os comprimentos de onda de emissão de alguns lasers de bombeamento, como por exemplo o laser de N2 (337 nm) e o terceiro harmônico do laser de Nd:Yag (355 nm). Além disso, sob excitação com luz ultravioleta, estes compostos emitem fluorescência entre 500 - 580 nm, região espectral de alto interesse tecnológico para aplicações em telecomunicações e medicina. A copolimerização dos novos corantes com metilmetacrilatos e a heterogeneização com sílica e zeolitas resultou em polímeros altamente fluorescentes com excelentes propriedades térmicas e ópticas. Além dos corantes benzazólicos foram utilizados outros corantes comercialmente disponíveis com emissão laser do azul até o vermelho. Foram eles: o Estilbeno 420, DPS (4,4’-difenilestilbeno), PBBO 2-(4-bifenilil)-6-fenilbenzoxazol- 1,3, as cumarinas C500, C503, C540A, C343, C440, C460, C480 e uma nova cumarina funcionalizada com um grupo acrilato C434+HEMA, os pirrometenos PM597 e PM650 e a rodamina Rh640. Com estes corantes foram sintetizados polímeros e copolímeros de metacrilato de metila e metacrilato de 2-hidroximetila e suas propriedades fotofísicas e laser foram avaliadas.