996 resultados para Laser conditioning
Resumo:
The purpose of this article is to report the experience of design and testing of orifice plate-based flow measuring systems for evaluation of air leakages in components of air conditioning systems. Two of the flow measuring stations were designed with a beta value of 0.405 and 0.418. The third was a dual path unit with orifice plates of beta value 0.613 and 0.525. The flow rates covered with all the four were from 4-94 l/s and the range of Reynolds numbers is from 5600 to 76,000. The coefficients of discharge were evaluated and compared with the Stolz equation. Measured C-d values are generally higher than those obtained from the equation, the deviations being larger in the low Reynolds number region. Further, it is observed that a second-degree polynomial is inadequate to relate the pressure drop and flow rate. The lower Reynolds number limits set by standards appear to be somewhat conservative.
Resumo:
Continuous CO2 laser welding of an Fe-Cu dissimilar couple in a butt-weld geometry at different process conditions is studied. The process conditions are varied to identify and characterize the microstructural features that are independent of the welding mode. The study presents a characterization of the microstructure and mechanical properties of the welds. Detailed microstructural analysis of the weld/base-metal interface shows features that are different on the two sides of the weld. The iron side can grow into the weld with a local change in length scale, whereas the interface on the copper side indicates a barrier to growth. The interface is jagged, and a banded microstructure consisting of iron-rich layers could be observed next to the weld/Cu interface. The observations suggest that solidification initiates inside the melt, where iron and copper are mixed due to convective flow. The transmission electron microscopy (TEM) of the weld region also indicates the occasional presence of droplets of iron and copper. The microstructural observations are rationalized using arguments drawn from a thermodynamic analysis of the Fe-Cu system.
Resumo:
The technique of laser resolidification has been used to study the rapid solidification behavior of concentrated Fe-18 at. pct Ge alloy. The microstructural evolution has been studied as a function of scanning rate of laser beam. Scanning electron microscopy (SEM) reveals the formation of a two-layer (designated as "A" and "B") microstructure in the remelted pool. The A layer shows a band consisting of a network of interconnected channels and walls, quite similar to cell walls. The B layer shows dendritic growth. Transmission electron microscopic observations reveal the formation of bcc alpha-FeGe in the B layer. Laser melting has been found to play an important role in formation of the A layer. Microstructural evolution in B has been analyzed using the competitive growth criterion, and formation of bcc alpha-FeGe has been rationalized in the remelted layers.
Resumo:
In this study, we derive a fast, novel time-domain algorithm to compute the nth-order moment of the power spectral density of the photoelectric current as measured in laser-Doppler flowmetry (LDF). It is well established that in the LDF literature these moments are closely related to fundamental physiological parameters, i.e. concentration of moving erythrocytes and blood flow. In particular, we take advantage of the link between moments in the Fourier domain and fractional derivatives in the temporal domain. Using Parseval's theorem, we establish an exact analytical equivalence between the time-domain expression and the conventional frequency-domain counterpart. Moreover, we demonstrate the appropriateness of estimating the zeroth-, first- and second-order moments using Monte Carlo simulations. Finally, we briefly discuss the feasibility of implementing the proposed algorithm in hardware.
Resumo:
High-Tc superconducting thin films can be deposited and processed by pulsed and CW lasers, and a respectable materials technology for the Y-Ba-Cu-O superconductor is rapidly emerging. The pulsed laser deposition technique is simple because it produces films with compositions nearly identical to those of the target pellets. A larger variety of substrates can be used, compared to other deposition technologies, because of the relatively low temperature requirements. The laser deposition mechanism has been investigated. As-deposited superconducting films, epitaxial films with smooth surfaces, and multilayer structures with abrupt interfaces have been produced. The electrical transport properties can be changed locally using a focused argon-ion laser by modifying the oxygen stoichiometry. This laser writing can be erased by room-temperature exposure to an oxygen plasma. Other laser patterning methods such as material removal, melt-quench, and direct pattern transfer are being developed.
Resumo:
Summary form only given. The authors have developed a controllable HTSC (high-temperature superconductor) weak-link fabrication process for producing weak links from the high-temperature superconductor YBa2Cu3O7-x (YBCO), using PrBa2Cu3O7-x (PBCO) as a lattice-matched semiconducting barrier layer. The devices obtained show current-voltage characteristics similar to those observed for low-temperature superconductor/normal-metal/superconductor (SNS) devices. The authors found good scaling of the critical currents Ic with area, A, and scaling of the resistances Rj with 1/A; the typical values of the IcRj product of 3.5 mV are consistent with traditional SNS behavior. The authors observed Shapiro steps in response to 100-GHz millimeter-wave radiation and oscillation of the DC supercurrent in a transverse magnetic field, thus demonstrating that both the AC and DC Josephson effects occur in these devices.
Resumo:
Ex-situ grown thin films of SrBi2Nb2O9 (SBN) were deposited on platinum substrates using laser ablation technique. A low substrate-temperature-processing route was chosen to avoid any diffusion of bismuth into the Pt electrode. It was observed that the as grown films showed an oriented growth along the 'c'-axis (with zero spontaneous polarization). The as grown films were subsequently annealed to enhance crystallization. Upon annealing, these films transformed into a polycrystalline structure, and exhibited excellent ferroelectric properties. The switching was made to be possible by lowering the thickness without losing the electrically insulating behavior of the films. The hysteresis results showed an excellent square-shaped loop with results (P-r = 4 muC/cm(2) E-c = 90 kV/cm) in good agreement with the earlier reports. The films also exhibited a dielectric constant of 190 and a dissipation factor of 0.02, which showed dispersion at low frequencies. The frequency dispersion was found to obey Jonscher's universal power law relation, and was attributed to the ionic charge hopping process according to earlier reports. The de transport studies indicated an ohmic behavior in the low voltage region, while higher voltages induced a bulk space charge and resulted in non-linear current-voltage dependence.
Resumo:
A simplified two-temperature model is presented for the vibrational energy levels of the N2O and N2 molecules of an N2O-N2-He gasdynamic laser (GDL), and the governing equations for the unsteady flow of the gas mixture in a convergent-divergent contour nozzle are solved using a time-dependent numerical technique. Final steady-state distributions are obtained for vibrational temperatures, population inversion, and the small-signal laser gain along the nozzle. It is demonstrated that, for plenum temperatures lower than 1200 K, an N2O GDL such as the present is more efficient than a CO2 GDL in identical operating conditions
Resumo:
The dielectric response of pulsed laser ablated barium strontium titanate thin films were studied as a function of frequency and ambient temperature (from room temperature to 320 degrees C) by employing impedance spectroscopy. Combined modulus and impedance spectroscopic plots were used to study the response of the film, which in general may contain the grain, grain boundary, and the electrode/film interface as capacitive elements. The spectroscopic plots revealed that the major response was due to the grains, while contributions from the grain boundary or the electrode/film interface was negligible. Further observation from the complex impedance plot showed data points lying on a single semicircle, implying the response originated from a single capacitive element corresponding to the bulk grains. Conductivity plots against frequency at different temperatures suggested a response obeying the 'universal power law'. The value of the activation energies computed from the Arrhenius plots of both ac and dc conductivities with 1000/T were 0.97 and 1.04 eV, respectively. This was found to be in excellent agreement with published literature, and was attributed to the motion of oxygen vacancies within the bulk. (C) 2000 American Institute of Physics. [S0021-8979(00)02801-2].
Resumo:
The formation of crystalline diamond films from amorphous diamond-like carbon films by pulsed laser irradiation with a 300 μs non-Q-switched Nd:YAG laser has been established by a combined study of transmission electron microscopy, x-ray photoelectron spectroscopy, and electrical resistivity. The films have been prepared by glow discharge decomposition of a mixture of propane, n-butane, and hydrogen in a rf plasma operating at a frequency of 13.56 MHz. Prior to laser irradiation, the films have been found to be amorphous by transmission electron microscope studies. After irradiation, the electron diffraction patterns clearly point out the formation of cubic diamond structure with a lattice spacing of 3.555 Å. However, the close similarity between diamond and graphite electron diffraction patterns could sometimes be misleading regarding the formation of a diamond structure, and hence, x-ray photoelectron spectroscopic studies have been carried out to confirm the results. A chemical shift in the C 1s core level binding energies towards higher values, viz., from 286.5 to 287.8 eV after laser irradiation, and a high electrical resistivity >1013 Ω cm are consistent with the growth of diamond structure. This novel "low-temperature, low-pressure" synthesis of diamond films offers enormous potential in terms of device compatibility with other solid-state devices.
Resumo:
The magnetic field induced broadening of the normal to superconducting resistive transition of YBa2Cu3O7−x thin films laser deposited on (100) MgO substrates for field oriented parallel to the c axis is found to be significantly reduced in comparison with that found previously in single crystals and in films deposited on SrTiO3. This reduction in broadening is associated with a high density of defects which, while causing a slight decrease in Tc and an increase in the zero‐field transition width, seems to provide strong vortex pinning centers that reduce flux creep
Resumo:
Li-doped ZnO thin films (Zn1-xLixO, x=0.05-0.15) were grown by pulsed-laser ablation technique. Highly c-axis-oriented films were obtained at a growth temperature of 500 degrees C. Ferroelectricity in Zn1-xLixO was found from the temperature-dependent dielectric constant and from the polarization hysteresis loop. The transition temperature (T-c) varied from 290 to 330 K as the Li concentration increased from 0.05 to 0.15. It was found that the maximum value of the dielectric constant at T-c is a function of Li concentration. A symmetric increase in memory window with the applied gate voltage is observed for the ferroelectric thin films on a p-type Si substrate. A ferroelectric P-E hysteresis loop was observed for all the compositions. The spontaneous polarization (P-s) and coercive field (E-c) of 0.6 mu C/cm(2) and 45 kV/cm were obtained for Zn0.85Li0.15O thin films. These observations reveal that partial replacement of host Zn by Li ions induces a ferroelectric phase in the wurtzite-ZnO semiconductor. The dc transport studies revealed an Ohmic behavior in the lower-voltage region and space-charge-limited conduction prevailed at higher voltages. The optical constants were evaluated from the transmission spectrum and it was found that Li substitution in ZnO enhances the dielectric constant.
Resumo:
Direct writing of patterns is being widely attempted in the field of microelectronic circuit/device manufacture. Use of this technique eliminates the need for employing photolithographic process. Laser induced direct writing can be achieved by (i) Photochemical reaction [i] , (ii) Evaporation from target material [2], and (iii) decomposition.Micron size features of palladium and copper through decomposition of palladium acetate and copper formate respectively on quartz and silicon using Argon ion laser have been reported [3,4] .In this commuication we report a technique for both single line and large area depositon of copper through decomposition of copper acetate,(CH3COO)2Cu, on alumina substrates.Nd:YAG laser known for its reliability and low maintenance cost as compared to excimer and other gas lasers is used. This technique offers an attractive and economical alternative for manufacture of thin film microcircuits.
Resumo:
A new method for producing simultaneous lasing at 10.6 and 38.3 microns in a CO2-N2-CS2 gasdynamic laser is presented. The theoretical analysis predicts small-signal gain values of the order 0.21/m for 10.6-micron lasing in CO2 molecules and 0.085/m for 38.3-micron lasing in CS2 molecules, indicating the possibility of dual wave lasing.
Resumo:
Ni80Fe20 thin films with high orientation were grown on Si(1 0 0) using pulsed laser ablation. The anisotropic magnetoresistance (AMR) and the planar Hall measurements show a 2.5% resistance anisotropy and a 45% planar Hall voltage change for magnetic field sweep of 10 Oe. The planar Hall sensitivity dR/dH was found to be 900 Omega T-1 compared with a previously reported maximum of 340 Omega T-1 in the same system.Also these films are found to withstand repeated thermal cycling up to 110 degrees C and the Hall sensitivity remains constant within this temperature range. This combination of properties makes the system highly suitable for low magnetic field sensors, particularly in geomagnetic and biosensor applications. To elucidate this, we have demonstrated that these sensors are sensitive to Earth's magnetic field. These results are compared with the sputter deposited films which have a very low AMR and planar Hall voltage change as compared with the films grown by PLD. The possible reasons for these contrasting characteristics are also discussed.