650 resultados para Laplace, Transformadas de
Resumo:
Um estudo experimental detalhado sobre transferências de calor e água no complexo solo - vegetação - atmosfera, em uma região de caatinga no semi-árido paraibano, mostrou que o comportamento termodinâmico do solo exerce papel fundamental no processo de evaporação do solo e nos fluxos de calor sensível. Este trabalho objetivou mostrar como a difusividade térmica do solo in loco foi determinada. Três métodos diferentes, embasados sobre hipóteses bem distintas, foram utilizados, e os seus resultados foram comparados. O método harmônico não se mostrou adequado para o tipo de solo encontrado. Para a camada superficial do solo (0-5 cm), o método CLTM (Corrected Laplace Transform Method) mostrou-se bem adaptado. Em todos os casos, o método NHS (método de Nassar & Horton), que considera variações verticais da difusividade térmica, apresentou uma dispersão elevada dos seus pontos, porém forneceu valores próximos dos valores estimados pelo método CLTM na camada superior e valores coerentes nas outras camadas. A umidade do solo, na profundidade média de 5 cm, foi medida por uma sonda TDR devidamente calibrada. Assim, pôde se determinar a relação entre a difusividade térmica e a umidade volumétrica para o solo estudado. Os valores muito baixos de difusividade constituem um condicionante importante do clima local.
Resumo:
The analysis of multiexponential decays is challenging because of their complex nature. When analyzing these signals, not only the parameters, but also the orders of the models, have to be estimated. We present an improved spectroscopic technique specially suited for this purpose. The proposed algorithm combines an iterative linear filter with an iterative deconvolution method. A thorough analysis of the noise effect is presented. The performance is tested with synthetic and experimental data.
Resumo:
In this paper we analyze the time of ruin in a risk process with the interclaim times being Erlang(n) distributed and a constant dividend barrier. We obtain an integro-differential equation for the Laplace Transform of the time of ruin. Explicit solutions for the moments of the time of ruin are presented when the individual claim amounts have a distribution with rational Laplace transform. Finally, some numerical results and a compare son with the classical risk model, with interclaim times following an exponential distribution, are given.
Resumo:
[spa] En un modelo de Poisson compuesto, definimos una estrategia de reaseguro proporcional de umbral : se aplica un nivel de retención k1 siempre que las reservas sean inferiores a un determinado umbral b, y un nivel de retención k2 en caso contrario. Obtenemos la ecuación íntegro-diferencial para la función Gerber-Shiu, definida en Gerber-Shiu -1998- en este modelo, que nos permite obtener las expresiones de la probabilidad de ruina y de la transformada de Laplace del momento de ruina para distintas distribuciones de la cuantía individual de los siniestros. Finalmente presentamos algunos resultados numéricos.
Resumo:
It is very well known that the first succesful valuation of a stock option was done by solving a deterministic partial differential equation (PDE) of the parabolic type with some complementary conditions specific for the option. In this approach, the randomness in the option value process is eliminated through a no-arbitrage argument. An alternative approach is to construct a replicating portfolio for the option. From this viewpoint the payoff function for the option is a random process which, under a new probabilistic measure, turns out to be of a special type, a martingale. Accordingly, the value of the replicating portfolio (equivalently, of the option) is calculated as an expectation, with respect to this new measure, of the discounted value of the payoff function. Since the expectation is, by definition, an integral, its calculation can be made simpler by resorting to powerful methods already available in the theory of analytic functions. In this paper we use precisely two of those techniques to find the well-known value of a European call
Resumo:
A análise dos teores de nutrientes de folhas de soja é um dos métodos mais eficientes para avaliar o estado nutricional da lavoura. O objetivo deste estudo foi caracterizar a variabilidade espacial dos teores foliares de nutrientes e da produtividade da cultura da soja num Latossolo Vermelho sob sistema semeadura direta durante dois anos. A área do experimento media 120 x 160 m, totalizando 1,92 ha. As amostras de folhas e os dados de produtividade da soja foram coletados em grade regular de 20 m, totalizando 63 pontos de amostragem nos anos de 1986 e 1988. O teor de nutrientes (N, P, K, Ca, Mg, S, B, Cu, Fe, Mn e Zn) foi determinado analisando-se a terceira folha com pecíolo a partir do ápice de cinco plantas, em locais circunvizinhos de cada um dos pontos de amostragem. As produtividades de soja foram quantificadas em subparcelas de 5 m², sendo posteriormente transformadas para kg ha-1. Os dados foram analisados pela estatística descritiva, a fim de verificar os parâmetros de tendência central e dispersão. A variabilidade espacial foi determinada pelo cálculo do semivariograma e construção de mapas de contorno por meio dos valores obtidos na interpolação por krigagem ordinária. Houve dependência espacial para os teores foliares de alguns nutrientes e para a produtividade de grãos de soja passível de ser mapeada em uma área com cerca de 2 ha, adubada de maneira homogênea. A dependência espacial não ocorreu de forma constante ao longo do tempo, o que deve ser considerado em estudos com cultivos sequenciais. A dependência espacial da produtividade de soja aumentou entre os anos estudados. Entre os nutrientes aplicados anualmente, via adubação, verificou-se a formação de um padrão de distribuição espacial, em 1986 e em 1988, especialmente para os teores de P.
Resumo:
It was shown by Weyl that the general static axisymmetric solution of the vacuum Einstein equations in four dimensions is given in terms of a single axisymmetric solution of the Laplace equation in three-dimensional flat space. Weyls construction is generalized here to arbitrary dimension D>~4. The general solution of the D-dimensional vacuum Einstein equations that admits D-2 orthogonal commuting non-null Killing vector fields is given either in terms of D-3 independent axisymmetric solutions of Laplaces equation in three-dimensional flat space or by D-4 independent solutions of Laplaces equation in two-dimensional flat space. Explicit examples of new solutions are given. These include a five-dimensional asymptotically flat black ring with an event horizon of topology S1S2 held in equilibrium by a conical singularity in the form of a disk.
Resumo:
Starting from the radiative transfer equation, we obtain an analytical solution for both the free propagator along one of the axes and an arbitrary phase function in the Fourier-Laplace domain. We also find the effective absorption parameter, which turns out to be very different from the one provided by the diffusion approximation. We finally present an analytical approximation procedure and obtain a differential equation that accurately reproduces the transport process. We test our approximations by means of simulations that use the Henyey-Greenstein phase function with very satisfactory results.
Resumo:
Photon migration in a turbid medium has been modeled in many different ways. The motivation for such modeling is based on technology that can be used to probe potentially diagnostic optical properties of biological tissue. Surprisingly, one of the more effective models is also one of the simplest. It is based on statistical properties of a nearest-neighbor lattice random walk. Here we develop a theory allowing one to calculate the number of visits by a photon to a given depth, if it is eventually detected at an absorbing surface. This mimics cw measurements made on biological tissue and is directed towards characterizing the depth reached by photons injected at the surface. Our development of the theory uses formalism based on the theory of a continuous-time random walk (CTRW). Formally exact results are given in the Fourier-Laplace domain, which, in turn, are used to generate approximations for parameters of physical interest.
Resumo:
Given a compact Riemannian manifold $M$ of dimension $m \geq 2$, we study the space of functions of $L^2(M)$generated by eigenfunctions ofeigenvalues less than $L \geq 1$ associated to the Laplace-Beltrami operator on $M$. On these spaces we give a characterization of the Carleson measures and the Logvinenko-Sereda sets.
Resumo:
It is very well known that the first succesful valuation of a stock option was done by solving a deterministic partial differential equation (PDE) of the parabolic type with some complementary conditions specific for the option. In this approach, the randomness in the option value process is eliminated through a no-arbitrage argument. An alternative approach is to construct a replicating portfolio for the option. From this viewpoint the payoff function for the option is a random process which, under a new probabilistic measure, turns out to be of a special type, a martingale. Accordingly, the value of the replicating portfolio (equivalently, of the option) is calculated as an expectation, with respect to this new measure, of the discounted value of the payoff function. Since the expectation is, by definition, an integral, its calculation can be made simpler by resorting to powerful methods already available in the theory of analytic functions. In this paper we use precisely two of those techniques to find the well-known value of a European call
Resumo:
In this paper we analyze the time of ruin in a risk process with the interclaim times being Erlang(n) distributed and a constant dividend barrier. We obtain an integro-differential equation for the Laplace Transform of the time of ruin. Explicit solutions for the moments of the time of ruin are presented when the individual claim amounts have a distribution with rational Laplace transform. Finally, some numerical results and a compare son with the classical risk model, with interclaim times following an exponential distribution, are given.
Resumo:
[spa] En un modelo de Poisson compuesto, definimos una estrategia de reaseguro proporcional de umbral : se aplica un nivel de retención k1 siempre que las reservas sean inferiores a un determinado umbral b, y un nivel de retención k2 en caso contrario. Obtenemos la ecuación íntegro-diferencial para la función Gerber-Shiu, definida en Gerber-Shiu -1998- en este modelo, que nos permite obtener las expresiones de la probabilidad de ruina y de la transformada de Laplace del momento de ruina para distintas distribuciones de la cuantía individual de los siniestros. Finalmente presentamos algunos resultados numéricos.