860 resultados para Land subsidence


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land cover classification is a key research field in remote sensing and land change science as thematic maps derived from remotely sensed data have become the basis for analyzing many socio-ecological issues. However, land cover classification remains a difficult task and it is especially challenging in heterogeneous tropical landscapes where nonetheless such maps are of great importance. The present study aims to establish an efficient classification approach to accurately map all broad land cover classes in a large, heterogeneous tropical area of Bolivia, as a basis for further studies (e.g., land cover-land use change). Specifically, we compare the performance of parametric (maximum likelihood), non-parametric (k-nearest neighbour and four different support vector machines - SVM), and hybrid classifiers, using both hard and soft (fuzzy) accuracy assessments. In addition, we test whether the inclusion of a textural index (homogeneity) in the classifications improves their performance. We classified Landsat imagery for two dates corresponding to dry and wet seasons and found that non-parametric, and particularly SVM classifiers, outperformed both parametric and hybrid classifiers. We also found that the use of the homogeneity index along with reflectance bands significantly increased the overall accuracy of all the classifications, but particularly of SVM algorithms. We observed that improvements in producer’s and user’s accuracies through the inclusion of the homogeneity index were different depending on land cover classes. Earlygrowth/degraded forests, pastures, grasslands and savanna were the classes most improved, especially with the SVM radial basis function and SVM sigmoid classifiers, though with both classifiers all land cover classes were mapped with producer’s and user’s accuracies of around 90%. Our approach seems very well suited to accurately map land cover in tropical regions, thus having the potential to contribute to conservation initiatives, climate change mitigation schemes such as REDD+, and rural development policies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protecting native biodiversity against alien invasive species requires powerful methods to anticipate these invasions and to protect native species assumed to be at risk. Here, we describe how species distribution models (SDMs) can be used to identify areas predicted as suitable for rare native species and also predicted as highly susceptible to invasion by alien species, at present and under future climate and land-use scenarios. To assess the condition and dynamics of such conflicts, we developed a combined predictive modelling (CPM) approach, which predicts species distributions by combining two SDMs fitted using subsets of predictors classified as acting at either regional or local scales. We illustrate the CPM approach for an alien invader and a rare species associated to similar habitats in northwest Portugal. Combined models predict a wider variety of potential species responses, providing more informative projections of species distributions and future dynamics than traditional, non-combined models. They also provide more informative insight regarding current and future rare-invasive conflict areas. For our studied species, conflict areas of highest conservation relevance are predicted to decrease over the next decade, supporting previous reports that some invasive species may contract their geographic range and impact due to climate change. More generally, our results highlight the more informative character of the combined approach to address practical issues in conservation and management programs, especially those aimed at mitigating the impact of invasive plants, land-use and climate changes in sensitive regions

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use store-specific data for a major UK supermarket chain to estimate the impact of planning on store output. Using the quasi-natural experiment of the variation in policies between England and other UK countries, we isolate the impact of Town Centre First policies. We find that space contributes directly to store productivity; and planning policies in England directly reduce output both by reducing store sizes and forcing stores onto less productive sites. We estimate that since the late 1980s planning policies have imposed a loss of output of at least 18.3 to 24.9% - more than a “lost decade’s” growth. JEL codes: D2, L51, L81, R32.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Altitudinal tree lines are mainly constrained by temperature, but can also be influenced by factors such as human activity, particularly in the European Alps, where centuries of agricultural use have affected the tree-line. Over the last decades this trend has been reversed due to changing agricultural practices and land-abandonment. We aimed to combine a statistical land-abandonment model with a forest dynamics model, to take into account the combined effects of climate and human land-use on the Alpine tree-line in Switzerland. Land-abandonment probability was expressed by a logistic regression function of degree-day sum, distance from forest edge, soil stoniness, slope, proportion of employees in the secondary and tertiary sectors, proportion of commuters and proportion of full-time farms. This was implemented in the TreeMig spatio-temporal forest model. Distance from forest edge and degree-day sum vary through feed-back from the dynamics part of TreeMig and climate change scenarios, while the other variables remain constant for each grid cell over time. The new model, TreeMig-LAb, was tested on theoretical landscapes, where the variables in the land-abandonment model were varied one by one. This confirmed the strong influence of distance from forest and slope on the abandonment probability. Degree-day sum has a more complex role, with opposite influences on land-abandonment and forest growth. TreeMig-LAb was also applied to a case study area in the Upper Engadine (Swiss Alps), along with a model where abandonment probability was a constant. Two scenarios were used: natural succession only (100% probability) and a probability of abandonment based on past transition proportions in that area (2.1% per decade). The former showed new forest growing in all but the highest-altitude locations. The latter was more realistic as to numbers of newly forested cells, but their location was random and the resulting landscape heterogeneous. Using the logistic regression model gave results consistent with observed patterns of land-abandonment: existing forests expanded and gaps closed, leading to an increasingly homogeneous landscape.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Typically at dawn on a hot summer day, land plants need precise molecular thermometers to sense harmless increments in the ambient temperature to induce a timely heat shock response (HSR) and accumulate protective heat shock proteins in anticipation of harmful temperatures at mid-day. Here, we found that the cyclic nucleotide gated calcium channel (CNGC) CNGCb gene from Physcomitrella patens and its Arabidopsis thaliana ortholog CNGC2, encode a component of cyclic nucleotide gated Ca(2+) channels that act as the primary thermosensors of land plant cells. Disruption of CNGCb or CNGC2 produced a hyper-thermosensitive phenotype, giving rise to an HSR and acquired thermotolerance at significantly milder heat-priming treatments than in wild-type plants. In an aequorin-expressing moss, CNGCb loss-of-function caused a hyper-thermoresponsive Ca(2+) influx and altered Ca(2+) signaling. Patch clamp recordings on moss protoplasts showed the presence of three distinct thermoresponsive Ca(2+) channels in wild-type cells. Deletion of CNGCb led to a total absence of one and increased the open probability of the remaining two thermoresponsive Ca(2+) channels. Thus, CNGC2 and CNGCb are expected to form heteromeric Ca(2+) channels with other related CNGCs. These channels in the plasma membrane respond to increments in the ambient temperature by triggering an optimal HSR, leading to the onset of plant acquired thermotolerance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research has demonstrated that landscape or watershed scale processes can influence instream aquatic ecosystems, in terms of the impacts of delivery of fine sediment, solutes and organic matter. Testing such impacts upon populations of organisms (i.e. at the catchment scale) has not proven straightforward and differences have emerged in the conclusions reached. This is: (1) partly because different studies have focused upon different scales of enquiry; but also (2) because the emphasis upon upstream land cover has rarely addressed the extent to which such land covers are hydrologically connected, and hence able to deliver diffuse pollution, to the drainage network However, there is a third issue. In order to develop suitable hydrological models, we need to conceptualise the process cascade. To do this, we need to know what matters to the organism being impacted by the hydrological system, such that we can identify which processes need to be modelled. Acquiring such knowledge is not easy, especially for organisms like fish that might occupy very different locations in the river over relatively short periods of time. However, and inevitably, hydrological modellers have started by building up piecemeal the aspects of the problem that we think matter to fish. Herein, we report two developments: (a) for the case of sediment associated diffuse pollution from agriculture, a risk-based modelling framework, SCIMAP, has been developed, which is distinct because it has an explicit focus upon hydrological connectivity; and (b) we use spatially distributed ecological data to infer the processes and the associated process parameters that matter to salmonid fry. We apply the model to spatially distributed salmon and fry data from the River Eden, Cumbria, England. The analysis shows, quite surprisingly, that arable land covers are relatively unimportant as drivers of fry abundance. What matters most is intensive pasture, a land cover that could be associated with a number of stressors on salmonid fry (e.g. pesticides, fine sediment) and which allows us to identify a series of risky field locations, where this land cover is readily connected to the river system by overland flow. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mountain regions and UNESCO Mountain Biosphere Reserves (MBRs) encapsulate broad elevational ranges, cover large gradients of geological, topographical and climatic diversity, and thus host greater biodiversity than the surrounding lowlands. Much of the biological richness in MBRs results from the interaction of climatic contrasts and gravitational forces along elevational gradients. External forces such as atmospheric change and human land use interact with these gradients, and result in distinct landscape patchiness, ie mosaics of land cover types within and across elevational belts. The management of MBRs influences land use and land cover, which affects biodiversity and ecosystem processes, both of which provide goods and services to society. Due to their broad environmental and biological diversity, MBRs are ideally suited for global change research and will be increasingly important in illustrating biodiversity conservation. This article summarizes the ecologically relevant results of an international workshop on elevational gradients that aimed to achieve a synthesis of the major ecosystem and biodiversity conditions and drivers in an altitude context. The workshop developed a core research agenda for MBRs that prioritizes long-term research and changes in land use across a broad elevational range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To explore the effects of deforestation and resulting differences in vegetation and land cover on entomological parameters, such as anopheline species composition, abundance, biting rate, parity and entomological inoculation rate (EIR), three villages were selected in the Lower Caura River Basin, state of Bolívar, Venezuela. All-night mosquito collections were conducted between March 2008-January 2009 using CDC light traps and Mosquito Magnet(r) Liberty Plus. Human landing catches were performed between 06:00 pm-10:00 pm, when anophelines were most active. Four types of vegetation were identified. The Annual Parasite Index was not correlated with the type of vegetation. The least abundantly forested village had the highest anopheline abundance, biting rate and species diversity. Anopheles darlingi and Anopheles nuneztovari were the most abundant species and were collected in all three villages. Both species showed unique biting cycles. The more abundantly forested village of El Palmar reported the highest EIR. The results confirmed previous observations that the impacts of deforestation and resulting changes in vegetation cover on malaria transmission are complex and vary locally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Question Does a land-use variable improve spatial predictions of plant species presence-absence and abundance models at the regional scale in a mountain landscape? Location Western Swiss Alps. Methods Presence-absence generalized linear models (GLM) and abundance ordinal logistic regression models (LRM) were fitted to data on 78 mountain plant species, with topo-climatic and/or land-use variables available at a 25-m resolution. The additional contribution of land use when added to topo-climatic models was evaluated by: (1) assessing the changes in model fit and (2) predictive power, (3) partitioning the deviance respectively explained by the topo-climatic variables and the land-use variable through variation partitioning, and (5) comparing spatial projections. Results Land use significantly improved the fit of presence-absence models but not their predictive power. In contrast, land use significantly improved both the fit and predictive power of abundance models. Variation partitioning also showed that the individual contribution of land use to the deviance explained by presence-absence models was, on average, weak for both GLM and LRM (3.7% and 4.5%, respectively), but changes in spatial projections could nevertheless be important for some species. Conclusions In this mountain area and at our regional scale, land use is important for predicting abundance, but not presence-absence. The importance of adding land-use information depends on the species considered. Even without a marked effect on model fit and predictive performance, adding land use can affect spatial projections of both presence-absence and abundance models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this book is to survey on different Land Use Planning and safety approaches in vicinity of industrial plants. As this research is associated with three broad fields of Land Use Planning, safety and security, the set principle is to avoid unnecessary and over detailed information, but including the useful ones to provide a comprehensive resource which can be applicable for several purposes. Besides, the proposed method, which is explained in Chapter 7, can initiate a new field for future of Land Use Planning in vicinity of industrial plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Questions: Did the forest area in the Swiss Alps increase between 1985 and 1997? Does the forest expansion near the tree line represent an invasion into abandoned grasslands (ingrowth) or a true upward shift of the local tree line? What land cover / land use classes did primarily regenerate to forest, and what forest structural types did primarily regenerate? And, what are possible drivers of forest regeneration in the tree line ecotone, climate and/or land use change? Location: Swiss Alps. Methods: Forest expansion was quantified using data from the repeated Swiss land use statistics GEOSTAT. A moving window algorithm was developed to distinguish between forest ingrowth and upward shift. To test a possible climate change influence, the resulting upward shifts were compared to a potential regional tree line. Results: A significant increase of forest cover was found between 1650 to and 2450 m. Above 1650 m, 10% of the new forest areas were identified as true upward shifts whereas 90% represented ingrowth, and we identified both land use and climate change as likely drivers. Most upward shift activities were found to occur within a band of 300 m below the potential regional tree line, indicating land use as the most likely driver. Only 4% of the upward shifts were identified to rise above the potential regional tree line, thus indicating climate change. Conclusions: Land abandonment was the most dominant driver for the establishment of new forest areas, even at the tree line ecotone. However, a small fraction of upwards shift can be attributed to the recent climate warming, a fraction that is likely to increase further if climate continues to warm, and with a longer time-span between warming and measurement of forest cover.