765 resultados para LYAPUNOV FUNCTIONALS
Resumo:
Computational material science with the Density Functional Theory (DFT) has recently gained a method for describing, for the first time the non local bonding i.e., van der Waals (vdW) bonding. The newly proposed van der Waals-Density Functional (vdW-DF) is employed here to address the role of non local interactions in the case of H2 adsorption on Ru(0001) surface. The later vdW-DF2 implementation with the DFT code VASP (Vienna Ab-initio Simulation Package) is used in this study. The motivation for studying H2 adsorption on ruthenium surface arose from the interest to hydrogenation processes. Potential energy surface (PES) plots are created for adsorption sites top, bridge, fcc and hcp, employing the vdW-DF2 functional. The vdW-DF yields 0.1 eV - 0.2 eV higher barriers for the dissociation of the H2 molecule; the vdW-DF seems to bind the H2 molecule more tightly together. Furthermore, at the top site, which is found to be the most reactive, the vdW functional suggests no entrance barrier or in any case smaller than 0.05 eV, whereas the corresponding calculation without the vdW-DF does. Ruthenium and H2 are found to have the opposite behaviors with the vdW-DF; Ru lattice constants are overestimated while H2 bond length is shorter. Also evaluation of the CPU time demand of the vdW-DF2 is done from the PES data. From top to fcc sites the vdW-DF computational time demand is larger by 4.77 % to 20.09 %, while at the hcp site it is slightly smaller. Also the behavior of a few exchange correlation functionals is investigated along addressing the role of vdW-DF. Behavior of the different functionals is not consistent between the Ru lattice constants and H2 bond lengths. It is thus difficult to determine the quality of a particular exchange correlation functional by comparing equilibrium separations of the different elements. By comparing PESs it would be computationally highly consuming.
Resumo:
At the present work the bifurcational behaviour of the solutions of Rayleigh equation and corresponding spatially distributed system is being analysed. The conditions of oscillatory and monotonic loss of stability are obtained. In the case of oscillatory loss of stability, the analysis of linear spectral problem is being performed. For nonlinear problem, recurrent formulas for the general term of the asymptotic approximation of the self-oscillations are found, the stability of the periodic mode is analysed. Lyapunov-Schmidt method is being used for asymptotic approximation. The correlation between periodic solutions of ODE and PDE is being investigated. The influence of the diffusion on the frequency of self-oscillations is being analysed. Several numerical experiments are being performed in order to support theoretical findings.
Resumo:
In this thesis the bifurcational behavior of the solutions of Langford system is analysed. The equilibriums of the Langford system are found, and the stability of equilibriums is discussed. The conditions of loss of stability are found. The periodic solution of the system is approximated. We consider three types of boundary condition for Langford spatially distributed system: Neumann conditions, Dirichlet conditions and Neumann conditions with additional requirement of zero average. We apply the Lyapunov-Schmidt method to Langford spatially distributed system for asymptotic approximation of the periodic mode. We analyse the influence of the diffusion on the behavior of self-oscillations. As well in the present work we perform numerical experiments and compare it with the analytical results.
Resumo:
Chaotic behaviour is one of the hardest problems that can happen in nonlinear dynamical systems with severe nonlinearities. It makes the system's responses unpredictable. It makes the system's responses to behave similar to noise. In some applications it should be avoided. One of the approaches to detect the chaotic behaviour is nding the Lyapunov exponent through examining the dynamical equation of the system. It needs a model of the system. The goal of this study is the diagnosis of chaotic behaviour by just exploring the data (signal) without using any dynamical model of the system. In this work two methods are tested on the time series data collected from AMB (Active Magnetic Bearing) system sensors. The rst method is used to nd the largest Lyapunov exponent by Rosenstein method. The second method is a 0-1 test for identifying chaotic behaviour. These two methods are used to detect if the data is chaotic. By using Rosenstein method it is needed to nd the minimum embedding dimension. To nd the minimum embedding dimension Cao method is used. Cao method does not give just the minimum embedding dimension, it also gives the order of the nonlinear dynamical equation of the system and also it shows how the system's signals are corrupted with noise. At the end of this research a test called runs test is introduced to show that the data is not excessively noisy.
Resumo:
Adaptive control systems are one of the most significant research directions of modern control theory. It is well known that every mechanical appliance’s behavior noticeably depends on environmental changes, functioning-mode parameter changes and changes in technical characteristics of internal functional devices. An adaptive controller involved in control process allows reducing an influence of such changes. In spite of this such type of control methods is applied seldom due to specifics of a controller designing. The work presented in this paper shows the design process of the adaptive controller built by Lyapunov’s function method for the Hydraulic Drive. The calculation needed and the modeling were conducting with MATLAB® software including Simulink® and Symbolic Math Toolbox™ etc. In the work there was applied the Jacobi matrix linearization of the object’s mathematical model and derivation of the suitable reference models based on Newton’s characteristic polynomial. The intelligent adaptive to nonlinearities algorithm for solving Lyapunov’s equation was developed. Developed algorithm works properly but considered plant is not met requirement of functioning with. The results showed confirmation that adaptive systems application significantly increases possibilities in use devices and might be used for correction a system’s behavior dynamics.
Resumo:
Optimization of quantum measurement processes has a pivotal role in carrying out better, more accurate or less disrupting, measurements and experiments on a quantum system. Especially, convex optimization, i.e., identifying the extreme points of the convex sets and subsets of quantum measuring devices plays an important part in quantum optimization since the typical figures of merit for measuring processes are affine functionals. In this thesis, we discuss results determining the extreme quantum devices and their relevance, e.g., in quantum-compatibility-related questions. Especially, we see that a compatible device pair where one device is extreme can be joined into a single apparatus essentially in a unique way. Moreover, we show that the question whether a pair of quantum observables can be measured jointly can often be formulated in a weaker form when some of the observables involved are extreme. Another major line of research treated in this thesis deals with convex analysis of special restricted quantum device sets, covariance structures or, in particular, generalized imprimitivity systems. Some results on the structure ofcovariant observables and instruments are listed as well as results identifying the extreme points of covariance structures in quantum theory. As a special case study, not published anywhere before, we study the structure of Euclidean-covariant localization observables for spin-0-particles. We also discuss the general form of Weyl-covariant phase-space instruments. Finally, certain optimality measures originating from convex geometry are introduced for quantum devices, namely, boundariness measuring how ‘close’ to the algebraic boundary of the device set a quantum apparatus is and the robustness of incompatibility quantifying the level of incompatibility for a quantum device pair by measuring the highest amount of noise the pair tolerates without becoming compatible. Boundariness is further associated to minimum-error discrimination of quantum devices, and robustness of incompatibility is shown to behave monotonically under certain compatibility-non-decreasing operations. Moreover, the value of robustness of incompatibility is given for a few special device pairs.
Resumo:
New density functionals representing the exchange and correlation energies (per electron) are employed, based on the electron gas model, to calculate interaction potentials of noble gas systems X2 and XY, where X (and Y) are He,Ne,Ar and Kr, and of hydrogen atomrare gas systems H-X. The exchange energy density functional is that recommended by Handler and the correlation energy density functional is a rational function involving two parameters which were optimized to reproduce the correlation energy of He atom. Application of the two parameter function to other rare gas atoms shows that it is "universal"; i. e. ,accurate for the systems considered. The potentials obtained in this work compare well with recent experimental results and are a significant improvement over those from competing statistical modelS.
Resumo:
The exact mechanistic understanding of various organocatalytic systems in asymmetric reactions such as Henry and aza-Henry transformations is important for developing and designing new synthetic organocatalysts. The focus of this dissertation will be on the use of density functional theory (DFT) for studying the asymmetric aza-Henry reaction. The first part of the thesis is a detailed mechanistic investigation of a poorly understood chiral bis(amidine) (BAM) Brønsted acid catalyzed aza-Henry reaction between nitromethane and N-Boc phenylaldimine. The catalyst, in addition to acting as a Brønsted base, serves to simultaneously activate both the electrophile and the nucleophile through dual H-bonding during C-C bond formation and is thus essential for both reaction rate and selectivity. Analysis of the H-bonding interactions revealed that there was a strong preference for the formation of a homonuclear positive charge-assisted H-bond, which in turn governed the relative orientation of substrate binding. Attracted by this well-defined mechanistic investigation, the other important aspect of my PhD research addressed a detailed theoretical analysis accounting for the observed selectivity in diastereoselective versions of this reaction. A detailed inspection of the stereodetermining C-C bond forming transition states for monoalkylated nitronate addition to a range of electronically different aldimines, revealed that the origins of stereoselectivity were controlled by a delicate balance of different factors such as steric, orbital interactions, and the extent of distortion in the catalyst and substrates. The structural analysis of different substituted transition states established an interesting dependency on matching the shape and size of the catalyst (host molecule) and substrates (guest molecules) upon binding, both being key factors governing selectivity, in essence, offering an analogy to positive cooperative binding effect of catalytic enzymes and substrates in Nature. In addition, both intra-molecular (intra-host) and inter-molecular (host-guest, guest-guest) stabilizing interactions play a key role to the high π-facial selectivity. The application of dispersion-corrected functionals (i.e., ωB97X-D and B3LYP-D3) was essential for accurately modeling these stabilizing interactions, indicating the importance of dispersion effects in enantioselectivity. As a brief prelude to more extensive future studies, the influence of a triflate counterion on both reactivity and selectivity in this reaction was also addressed.
Resumo:
Une nouvelle notion d'enlacement pour les paires d'ensembles $A\subset B$, $P\subset Q$ dans un espace de Hilbert de type $X=Y\oplus Y^{\perp}$ avec $Y$ séparable, appellée $\tau$-enlacement, est définie. Le modèle pour cette définition est la généralisation de l'enlacement homotopique et de l'enlacement au sens de Benci-Rabinowitz faite par Frigon. En utilisant la théorie du degré développée dans un article de Kryszewski et Szulkin, plusieurs exemples de paires $\tau$-enlacées sont donnés. Un lemme de déformation est établi et utilisé conjointement à la notion de $\tau$-enlacement pour prouver un théorème d'existence de point critique pour une certaine classe de fonctionnelles sur $X$. De plus, une caractérisation de type minimax de la valeur critique correspondante est donnée. Comme corollaire de ce théorème, des conditions sont énoncées sous lesquelles l'existence de deux points critiques distincts est garantie. Deux autres théorèmes de point critiques sont démontrés dont l'un généralise le théorème principal de l'article de Kryszewski et Szulkin mentionné ci-haut.
Resumo:
La présente thèse traite de la description de systèmes complexes, notamment des polymères et des cuprates, par la théorie de la fonctionnelle de la densité. En premier lieu, la théorie de la fonctionnelle de la densité ainsi que différentes fonctionnelles utilisées pour simuler les matériaux à l’étude sont présentées. Plus spécifiquement, les fonctionnelles LDA et GGA sont décrites et leurs limites sont exposées. De plus, le modèle de Hubbard ainsi que la fonctionnelle LDA+U qui en découle sont abordés dans ce chapitre afin de permettre la simulation des propriétés de matériaux à forte corrélation électronique. Par la suite, les résultats obtenus sur les polymères sont résumés par deux articles. Le premier traite de la variation de la bande interdite entre les polymères pontés et leurs homologues non pontés. Le second se penche sur l’étude de polymères à faible largeur de bande interdite. Dans ce dernier, il sera démontré qu’une fonctionnelle hybride, contenant de l’échange exact, est nécessaire afin de décrire les propriétés électroniques des systèmes à l’étude. Finalement, le dernier chapitre est consacré à l’étude des cuprates supraconducteurs. La LDA+U pouvant rendre compte de la forte localisation dans les orbitales 3d des atomes de cuivre, une étude de l’impact de cette fonctionnelle sur les propriétés électroniques est effectuée. Un dernier article investiguant différents ordres magnétiques dans le La2CuO4 dopé termine le dernier chapitre. On trouve aussi, en annexe, un complément d’information pour le second article et une description de la théorie de la supraconductivité de Bardeen, Cooper et Schrieffer.
Resumo:
Le présent mémoire traite de la description du LaOFeAs, le premier matériau découvert de la famille des pnictures de fer, par la théorie de la fonctionnelle de la densité (DFT). Plus particulièrement, nous allons exposer l’état actuel de la recherche concernant ce matériau avant d’introduire rapidement la DFT. Ensuite, nous allons regarder comment se comparent les paramètres structuraux que nous allons calculer sous différentes phases par rapport aux résultats expérimentaux et avec les autres calculs DFT dans la littérature. Nous allons aussi étudier en détails la structure électronique du matériau sous ses différentes phases magnétiques et structurales. Nous emploierons donc les outils normalement utilisés pour mieux comprendre la structure électronique : structures de bandes, densités d’états, surfaces de Fermi, nesting au niveau de Fermi. Nous tirerons profit de la théorie des groupes afin de trouver les modes phononiques permis par la symétrie de notre cristal. De plus, nous étudierons le couplage électrons-phonons pour quelques modes. Enfin, nous regarderons l’effet de différentes fonctionnelles sur nos résultats pour voir à quel point ceux-ci sont sensibles à ce choix. Ainsi, nous utiliserons la LDA et la PBE, mais aussi la LDA+U et la PBE+U.
Resumo:
La présente thèse porte sur les calculs utilisant la théorie de la fonctionnelle de la densité (DFT) pour simuler des systèmes dans lesquels les effets à longue portée sont importants. Une emphase particulière est mise sur les calculs des énergies d’excitations, tout particulièrement dans le cadre des applications photovoltaïques. Cette thèse aborde ces calculs sous deux angles. Tout d’abord, des outils DFT déjà bien établis seront utilisés pour simuler des systèmes d’intérêt expérimental. Par la suite, la théorie sous-jacente à la DFT sera explorée, ses limites seront identifiées et de nouveaux développements théoriques remédiant à ceux-ci seront proposés. Ainsi, dans la première partie de cette thèse, des calculs numériques utilisant la DFT et la théorie de la fonctionnelle de la densité dépendante du temps (TDDFT) telles qu’implémentées dans le logiciel Gaussian [1] sont faits avec des fonctionnelles courantes sur des molécules et des polymères d’intérêt expérimental. En particulier, le projet présenté dans le chapitre 2 explore l’utilisation de chaînes latérales pour optimiser les propriétés électroniques de polymères déjà couramment utilisés en photovoltaïque organique. Les résultats obtenus montrent qu’un choix judicieux de chaînes latérales permet de contrôler les propriétés électroniques de ces polymères et d’augmenter l’efficacité des cellules photovoltaïques les utilisant. Par la suite, le projet présenté dans le chapitre 3 utilise la TDDFT pour explorer les propriétés optiques de deux polymères, le poly-3-hexyl-thiophène (P3HT) et le poly-3-hexyl- sélénophène (P3HS), ainsi que leur mélange, dans le but d’appuyer les observations expérimentales indiquant la formation d’exciplexe dans ces derniers. Les calculs numériques effectués dans la première partie de cette thèse permettent de tirer plusieurs conclusions intéressantes, mais mettent également en évidence certaines limites de la DFT et de la TDDFT pour le traitement des états excités, dues au traitement approximatif de l’interaction coulombienne à longue portée. Ainsi, la deuxième partie de cette thèse revient aux fondements théoriques de la DFT. Plus précisément, dans le chapitre 4, une série de fonctionnelles modélisant plus précisément l’interaction coulombienne à longue portée grâce à une approche non-locale est élaborée. Ces fonctionnelles sont basées sur la WDA (weighted density approximation), qui est modifiée afin d’imposer plusieurs conditions exactes qui devraient être satisfaites par le trou d’échange. Ces fonctionnelles sont ensuite implémentées dans le logiciel Gaussian [1] et leurs performances sont évaluées grâce à des tests effectués sur une série de molécules et d’atomes. Les résultats obtenus indiquent que plusieurs de ces fonctionnelles donnent de meilleurs résultats que la WDA. De plus, ils permettrent de discuter de l’importance relative de satisfaire chacune des conditions exactes.
Resumo:
The thesis report results obtained from a detailed analysis of the fluctuations of the rheological parameters viz. shear and normal stresses, simulated by means of the Stokesian Dynamics method, of a macroscopically homogeneous sheared suspension of neutrally buoyant non-Brownian suspension of identical spheres in the Couette gap between two parallel walls in the limit of vanishingly small Reynolds numbers using the tools of non-linear dynamics and chaos theory for a range of particle concentration and Couette gaps. The thesis used the tools of nonlinear dynamics and chaos theory viz. average mutual information, space-time separation plots, visual recurrence analysis, principal component analysis, false nearest-neighbor technique, correlation integrals, computation of Lyapunov exponents for a range of area fraction of particles and for different Couette gaps. The thesis observed that one stress component can be predicted using another stress component at the same area fraction. This implies a type of synchronization of one stress component with another stress component. This finding suggests us to further analysis of the synchronization of stress components with another stress component at the same or different area fraction of particles. The different model equations of stress components for different area fraction of particles hints at the possible existence a general formula for stress fluctuations with area fraction of particle as a parameter
Resumo:
This thesis is a study of discrete nonlinear systems represented by one dimensional mappings.As one dimensional interative maps represent Poincarre sections of higher dimensional flows,they offer a convenient means to understand the dynamical evolution of many physical systems.It highlighting the basic ideas of deterministic chaos.Qualitative and quantitative measures for the detection and characterization of chaos in nonlinear systems are discussed.Some simple mathematical models exhibiting chaos are presented.The bifurcation scenario and the possible routes to chaos are explained.It present the results of the numerical computational of the Lyapunov exponents (λ) of one dimensional maps.This thesis focuses on the results obtained by our investigations on combinations maps,scaling behaviour of the Lyapunov characteristic exponents of one dimensional maps and the nature of bifurcations in a discontinous logistic map.It gives a review of the major routes to chaos in dissipative systems,namely, Period-doubling ,Intermittency and Crises.This study gives a theoretical understanding of the route to chaos in discontinous systems.A detailed analysis of the dynamics of a discontinous logistic map is carried out, both analytically and numerically ,to understand the route it follows to chaos.The present analysis deals only with the case of the discontinuity parameter applied to the right half of the interval of mapping.A detailed analysis for the n –furcations of various periodicities can be made and a more general theory for the map with discontinuities applied at different positions can be on a similar footing
Resumo:
This thesis presents analytical and numerical results from studies based on the multiple quantum well laser rate equation model. We address the problem of controlling chaos produced by direct modulation of laser diodes. We consider the delay feedback control methods for this purpose and study their performance using numerical simulation. Besides the control of chaos, control of other nonlinear effects such as quasiperiodicity and bistability using delay feedback methods are also investigated.A number of secure communication schemes based on synchronization of chaos semiconductor lasers have been successfully demonstrated theoretically and experimentally. The current investigations in these field include the study of practical issues on the implementations of such encryption schemes. We theoretically study the issues such as channel delay, phase mismatch and frequency detuning on the synchronization of chaos in directly modulated laser diodes. It would be helpful for designing and implementing chaotic encryption schemes using synchronization of chaos in modulated semiconductor lasers.