988 resultados para LUNG PROTECTIVE VENTILATION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND One-lung ventilation during thoracic surgery is associated with hypoxia-reoxygenation injury in the deflated and subsequently reventilated lung. Numerous studies have reported volatile anesthesia-induced attenuation of inflammatory responses in such scenarios. If the effect also extends to clinical outcome is yet undetermined. We hypothesized that volatile anesthesia is superior to intravenous anesthesia regarding postoperative complications. METHODS Five centers in Switzerland participated in the randomized controlled trial. Patients scheduled for lung surgery with one-lung ventilation were randomly assigned to one of two parallel arms to receive either propofol or desflurane as general anesthetic. Patients and surgeons were blinded to group allocation. Time to occurrence of the first major complication according to the Clavien-Dindo score was defined as primary (during hospitalization) or secondary (6-month follow-up) endpoint. Cox regression models were used with adjustment for prestratification variables and age. RESULTS Of 767 screened patients, 460 were randomized and analyzed (n = 230 for each arm). Demographics, disease and intraoperative characteristics were comparable in both groups. Incidence of major complications during hospitalization was 16.5% in the propofol and 13.0% in the desflurane groups (hazard ratio for desflurane vs. propofol, 0.75; 95% CI, 0.46 to 1.22; P = 0.24). Incidence of major complications within 6 months from surgery was 40.4% in the propofol and 39.6% in the desflurane groups (hazard ratio for desflurane vs. propofol, 0.95; 95% CI, 0.71 to 1.28; P = 0.71). CONCLUSIONS This is the first multicenter randomized controlled trial addressing the effect of volatile versus intravenous anesthetics on major complications after lung surgery. No difference between the two anesthesia regimens was evident.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural and functional complexities of the mammalian lung evolved to meet a unique set of challenges, namely, the provision of efficient delivery of inspired air to all lung units within a confined thoracic space, to build a large gas exchange surface associated with minimal barrier thickness and a microvascular network to accommodate the entire right ventricular cardiac output while withstanding cyclic mechanical stresses that increase several folds from rest to exercise. Intricate regulatory mechanisms at every level ensure that the dynamic capacities of ventilation, perfusion, diffusion, and chemical binding to hemoglobin are commensurate with usual metabolic demands and periodic extreme needs for activity and survival. This article reviews the structural design of mammalian and human lung, its functional challenges, limitations, and potential for adaptation. We discuss (i) the evolutionary origin of alveolar lungs and its advantages and compromises, (ii) structural determinants of alveolar gas exchange, including architecture of conducting bronchovascular trees that converge in gas exchange units, (iii) the challenges of matching ventilation, perfusion, and diffusion and tissue-erythrocyte and thoracopulmonary interactions. The notion of erythrocytes as an integral component of the gas exchanger is emphasized. We further discuss the signals, sources, and limits of structural plasticity of the lung in alveolar hypoxia and following a loss of lung units, and the promise and caveats of interventions aimed at augmenting endogenous adaptive responses. Our objective is to understand how individual components are matched at multiple levels to optimize organ function in the face of physiological demands or pathological constraints. © 2016 American Physiological Society. Compr Physiol 6:827-895, 2016.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We review a single surgeon and surgical centre's experience with congenital cystic adenomatoid malformation of the lung (CCAML) in relation to clinical spectrum, operative experience, and postoperative course. A retrospective hospital record review was done on surgically treated cases of CCAML over a 10-year period, focusing on number with antenatal diagnosis, spectrum of postnatal presentation, type of surgery performed, and outcome. Forty-seven patients from birth to 14 years of age underwent surgery for CCAML. Antenatal diagnosis (ante) was made in 30 cases. Of these, 10 became symptomatic before surgery. Six of the 17 postnatally-diagnosed (pnd) cases were an asymptomatic incidental finding. Overall, 16 were symptomatic in the 1st year of life, and five were symptomatic beyond 1 year of age. Symptoms varied from respiratory distress (seven ante, six pnd) to chronic cough (three, and recurrent chest infection (three ante, two pnd). All preoperative diagnoses were confirmed with chest CT. Most patients (25) were operated on before 3 months of age. Eleven were operated on in the first 2 weeks of life as emergency surgery for respiratory distress. The most common lobe involved was the right upper lobe (16), and lobectomy was performed in 42 cases, segmentectomy in four, and pneumonectomy in one. Seventeen cases were extubated immediately postoperatively; 29 required postoperative ventilation overnight, and nine needed more prolonged ventilation. Early postoperative complications included pneumothorax (two), pleural effusion (one), and chylous effusion (one). Late complications included recurrence in three cases (all segmentectomy), who then subsequently underwent lobectomy. There was one death from respiratory failure. Because there is an increasing trend in the detection of asymptomatic antenatally-diagnosed CCAML, consideration of early surgical excision to prevent complications is suggested by our series. CT scanning is mandatory for postnatal evaluation because chest x-ray could be normal. Safe elective excision after 3 months is supported by our low morbidity and less need for postoperative ventilation. Lobectomy is the procedure of choice to prevent recurrence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and objective: There are no data about the influence of anaesthetics on cardiovascular variables during pressure support ventilation of the lungs through the laryngeal mask airway. We compared propofol, sevoflurane and isoflurane for maintenance of anaesthesia with the ProSeal (R) laryngeal mask airway during pressure support ventilation. Methods: Sixty healthy adults undergoing peripheral musculo-skeletal surgery were randomized for maintenance with sevoflurane end-tidal 29%, isoflurane end-tidal 1.1% or propofol 6 mg kg(-1) h(-1) in oxygen 33% and air. Pressure support ventilation comprised positive end-expiratory pressure set at 5 cmH(2)O, and pressure support set 5 cmH(2)O above positive end-expiratory pressure. Pressure support was initiated when inspiration produced a 2 cmH(2)O reduction in airway pressure. A blinded observer recorded cardiorespiratory variables (heart rate, mean blood pressure, oxygen saturation, air-way occlusion pressure, respiratory rate, expired tidal volume, expired minute volume and end-tidal CO2), adverse events and emergence times. Results: Respiratory rate and minute volume were 10-21% lower, and end-tidal CO2 6-11% higher with the propofol group compared with the sevoflurane or isoflurane groups, but otherwise cardiorespiratory variables were similar among groups. No adverse events occurred in any group. Emergence times were longer with the propofol group compared with the sevoflurane or isoflurane groups (10 vs. 7 vs. 7 min). Conclusion: Lung ventilation is less effective and emergence times are longer with propofol than sevoflurane or isoflurane for maintenance of anaesthesia during pressure support ventilation with the ProSeal (R) laryngeal mask airway. However, these differences are small and of doubtful clinical importance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Smoke inhalation injuries are the leading cause of mortality from burn injury. Airway obstruction due to mucus plugging and bronchoconstriction can cause severe ventilation inhomogeneity and worsen hypoxia. Studies describing changes of viscoelastic characteristics of the lung after smoke inhalation are missing. We present results of a new smoke inhalation device in sheep and describe pathophysiological changes after smoke exposure. Fifteen female Merino ewes were anesthetized and intubated. Baseline data using electrical impedance tomography and multiple-breath inert-gas washout were obtained by measuring ventilation distribution, functional residual capacity, lung clearance index, dynamic compliance, and stress index. Ten sheep were exposed to standardized cotton smoke insufflations and five sheep to sham smoke insufflations. Measured carboxyhemoglobin before inhalation was 3.87 +/- 0.28% and 5 min after smoke was 61.5 +/- 2.1%, range 50-69.4% ( P < 0.001). Two hours after smoke functional residual capacity decreased from 1,773 +/- 226 to 1,006 +/- 129 ml and lung clearance index increased from 10.4 +/- 0.4 to 14.2 +/- 0.9. Dynamic compliance decreased from 56.6 +/- 5.5 to 32.8 +/- 3.2 ml/ cmH(2)O. Stress index increased from 0.994 +/- 0.009 to 1.081 +/- 0.011 ( P < 0.01) ( all means +/- SE, P < 0.05). Electrical impedance tomography showed a shift of ventilation from the dependent to the independent lung after smoke exposure. No significant change was seen in the sham group. Smoke inhalation caused immediate onset in pulmonary dysfunction and significant ventilation inhomogeneity. The smoke inhalation device as presented may be useful for interventional studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Functional electrical impedance tomography (EIT) measures relative impedance change that occurs in the chest during a distinct observation period and an EIT image describing regional relative impedance change is generated. Analysis of such an EIT image may be erroneous because it is based on an impedance signal that has several components. Most of the change in relative impedance in the chest is caused by air movement but other physiological events such as cardiac activity change in end expiratory level or pressure swings originating from a ventilator circuit can influence the impedance signal. We obtained EIT images and signals in spontaneously breathing healthy adults, in extremely prematurely born infants on continuous positive airway pressure and in ventilated sheep on conventional mechanical or high frequency oscillatory ventilation (HFOV). Data were analyzed in the frequency domain and results presented after band pass filtering within the frequency range of the physiological event of interest. Band pass filtering of EIT data is necessary in premature infants and on HFOV to differentiate and eliminate relative impedance changes caused by physiological events other than the one of interest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Caudal block results in a motor blockade that can reduce abdominal wall tension. This could interact with the balance between chest wall and lung recoil pressure and tension of the diaphragm, which determines the static resting volume of the lung. On this rationale, we hypothesised that caudal block causes an increase in functional residual capacity and ventilation distribution in anaesthetised children. Fifty-two healthy children (15-30 kg, 3-8 years of age) undergoing elective surgery with general anaesthesia and caudal block were studied and randomly allocated to two groups: caudal block or control. Following induction of anaesthesia, the first measurement was obtained in the supine position (baseline). All children were then turned to the left lateral position and patients in the caudal block group received a caudal block with bupivacaine. No intervention took place in the control group. After 15 nun in the supine position, the second assessment was performed. Functional residual capacity and parameters of ventilation distribution were calculated by a blinded reviewer. Functional residual capacity was similar at baseline in both groups. In the caudal block group, the capacity increased significantly (p < 0.0001) following caudal block, while in the control group, it remained unchanged. In both groups, parameters of ventilation distribution were consistent with the changes in functional residual capacity. Caudal block resulted in a significant increase in functional residual capacity and improvement in ventilation homogeneity in comparison with the control group. This indicates that caudal block might have a beneficial effect on gas exchange in anaesthetised, spontaneously breathing preschool-aged children with healthy lungs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurement of lung ventilation is one of the most reliable techniques in diagnosing pulmonary diseases. The time-consuming and bias-prone traditional methods using hyperpolarized H 3He and 1H magnetic resonance imageries have recently been improved by an automated technique based on 'multiple active contour evolution'. This method involves a simultaneous evolution of multiple initial conditions, called 'snakes', eventually leading to their 'merging' and is entirely independent of the shapes and sizes of snakes or other parametric details. The objective of this paper is to show, through a theoretical analysis, that the functional dynamics of merging as depicted in the active contour method has a direct analogue in statistical physics and this explains its 'universality'. We show that the multiple active contour method has an universal scaling behaviour akin to that of classical nucleation in two spatial dimensions. We prove our point by comparing the numerically evaluated exponents with an equivalent thermodynamic model. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radiotherapy is commonly used to treat lung cancer. However, radiation induced damage to lung tissue is a major limiting factor to its use. To minimize normal tissue lung toxicity from conformal radiotherapy treatment planning, we investigated the use of Perfluoropropane(PFP)-enhanced MR imaging to assess and guide the sparing of functioning lung. Fluorine Enhanced MRI using Perfluoropropane(PFP) is a dynamic multi-breath steady state technique enabling quantitative and qualitative assessments of lung function(1).

Imaging data was obtained from studies previously acquired in the Duke Image Analysis Laboratory. All studies were approved by the Duke IRB. The data was de-identified for this project, which was also approved by the Duke IRB. Subjects performed several breath-holds at total lung capacity(TLC) interspersed with multiple tidal breaths(TB) of Perfluoropropane(PFP)/oxygen mixture. Additive wash-in intensity images were created through the summation of the wash-in phase breath-holds. Additionally, model based fitting was utilized to create parametric images of lung function(1).

Varian Eclipse treatment planning software was used for putative treatment planning. For each subject two plans were made, a standard plan, with no regional functional lung information considered other than current standard models. Another was created using functional information to spare functional lung while maintaining dose to the target lesion. Plans were optimized to a prescription dose of 60 Gy to the target over the course of 30 fractions.

A decrease in dose to functioning lung was observed when utilizing this functional information compared to the standard plan for all five subjects. PFP-enhanced MR imaging is a feasible method to assess ventilatory lung function and we have shown how this can be incorporated into treatment planning to potentially decrease the dose to normal tissue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Field vaccination trials with Mycobacterium bovis BCG, an attenuated mutant of M. bovis, are ongoing in Spain, where the Eurasian wild boar (Sus scrofa) is regarded as the main driver of animal tuberculosis (TB). The oral baiting strategy consists in deploying vaccine baits twice each summer, in order to gain access to a high proportion of wild boar piglets. The aim of this study was to assess the response of wild boar to re-vaccination with BCG and to subsequent challenge with an M. bovis field strain. RESULTS BCG re-vaccinated wild boar showed reductions of 75.8% in lesion score and 66.9% in culture score, as compared to unvaccinated controls. Only one of nine vaccinated wild boar had a culture-confirmed lung infection, as compared to seven of eight controls. Serum antibody levels were highly variable and did not differ significantly between BCG re-vaccinated wild boar and controls. Gamma IFN levels differed significantly between BCG re-vaccinated wild boar and controls. The mRNA levels for IL-1b, C3 and MUT were significantly higher in vaccinated wild boar when compared to controls after vaccination and decreased after mycobacterial challenge. CONCLUSIONS Oral re-vaccination of wild boar with BCG yields a strong protective response against challenge with a field strain. Moreover, re-vaccination of wild boar with BCG is not counterproductive. These findings are relevant given that re-vaccination is likely to happen under real (field) conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mechanisms contributing to pulmonary and systemic injury induced by high tidal volume (VT) mechanical ventilation are not well known. We tested the hypothesis that increased peroxynitrite formation is involved in organ injury and dysfunction induced by mechanical ventilation. Male Sprague-Dawley rats were subject to low- (VT, 9 mL/kg; positive end-expiratory pressure, 5 cmH2O) or high- (VT, 25 mL/kg; positive end-expiratory pressure, 0 cmH2O) VT mechanical ventilation for 120 min, and received 1 of 3 treatments: 3-aminobenzamide (3-AB, 10 mg/kg, intravenous, a poly adenosine diphosphate ribose polymerase [PARP] inhibitor), or the metalloporphyrin manganese(III) tetrakis(1-methyl-4-pyridyl)porphyrin (MnTMPyP, 5 mg/kg intravenous, a peroxynitrite scavenger), or no treatment (control group), 30 min before starting the mechanical ventilation protocol (n = 8 per group, 6 treatment groups). We measured mean arterial pressure, peak inspiratory airway pressure, blood chemistry, and gas exchange. Oxidation (fluorescence for oxidized dihydroethidium), protein nitration (immunofluorescence and Western blot for 3-nitrotyrosine), PARP protein (Western blot) and gene expression of the nitric oxide (NO) synthase (NOS) isoforms (quantitative real-time reverse transcription polymerase chain reaction) were measured in lung and vascular tissue. Lung injury was quantified by light microscopy. High-VT mechanical ventilation was associated with hypotension, increased peak inspiratory airway pressure, worsened oxygenation; oxidation and protein nitration in lung and aortic tissue; increased PARP protein in lung; up-regulation of NOS isoforms in lung tissue; signs of diffuse alveolar damage at histological examination. Treatment with 3AB or MnTMPyP attenuated the high-VT mechanical ventilation-induced changes in pulmonary and cardiovascular function; down-regulated the expression of NOS1, NOS2, and NOS3; decreased oxidation and nitration in lung and aortic tissue; and attenuated histological changes. Increased peroxynitrite formation is involved in mechanical ventilation-induced pulmonary and vascular dysfunction.