987 resultados para LINEAR ELASTIC FRACTURE MECHANICS
Resumo:
A numerical study on the behavior of tied-back retaining walls in sand, using the finite element method (FEM) is presented. The analyses were performed using the software Plaxis 2D, and were focused on the development of horizontal displacements, horizontal stresses, shear forces and bending moments in the structure during the construction process. Emphasis was placed on the evaluation of wall embedment, tie-back horizontal spacing, wall thickness, and free anchor length on wall behavior. A representative soil profile of a specific region at the City of Natal, Brazil, was used in the numerical analyses. New facilities built on this region often include retaining structures of the same type studied herein. Soil behavior was modeled using the Mohr-Coulomb constitutive model, whereas the structural elements were modeled using the linear elastic model. Shear strength parameters of the soil layers were obtained from direct shear test results conducted with samples collected at the studied site. Deformation parameters were obtained from empirical correlations from SPT test results carried out on the studied site. The results of the numerical analyses revealed that the effect of wall embedment on the investigated parameters is virtually negligible. Conversely, the tie-back horizontal spacing plays an important role on the investigated parameters. The results also demonstrated that the wall thickness significantly affects the wall horizontal displacements, and the shear forces and bending moments within the retaining structure. However, wall thickness was not found to influence horizontal stresses in the structure
Resumo:
The growing demand in the use of composite materials necessitates a better understanding of its behavior related to many conditions of loading and service, as well as under several ways of connections involved in mechanisms of structural projects. Within these project conditions are highlighted the presence of geometrical discontinuities in the area of cross and longitudinal sections of structural elements and environmental conditions of work like UV radiation, moisture, heat, leading to a decrease in final mechanical response of the material. In this sense, this thesis aims to develop studies detailed (experimental and semi-empirical models) the effects caused by the presence of geometric discontinuity, more specifically, a central hole in the longitudinal section (with reduced cross section) and the influence of accelerated environmental aging on the mechanical properties and fracture mechanism of FGRP composite laminates under the action of uniaxial tensile loads. Studies on morphological behavior and structural degradation of composite laminates are performed by macroscopic and microscopic analysis of affected surfaces, in addition to evaluation by the Measurement technique for mass variation (TMVM). The accelerated environmental aging conditions are simulated by aging chamber. To study the simultaneous influence of aging/geometric discontinuity in the mechanical properties of composite laminates, a semiempirical model is proposed and called IE/FCPM Model. For the stress concentration due to the central hole, an analisys by failures criteria were performed by Average-Stress Criterion (ASC) and Point-Stress Criterion (PSC). Two polymeric composite laminates, manufactured industrially were studied: the first is only reinforced by short mats of fiberglass-E (LM) and the second where the reinforced by glass fiber/E comes in the form of bidirectional fabric (LT). In the conception configurations of laminates the anisotropy is crucial to the final mechanical response of the same. Finally, a comparative study of all parameters was performed for a better understanding of the results. How conclusive study, the characteristics of the final fracture of the laminate under all conditions that they were subjected, were analyzed. These analyzes were made at the macroscopic level (scanner) microscope (optical and scanning electron). At the end of the analyzes, it was observed that the degradation process occurs similarly for each composite researched, however, the LM composite compared to composite LT (configurations LT 0/90º and LT ±45º) proved to be more susceptible to loss of mechanical properties in both regarding with the central hole as well to accelerated environmental aging
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The elastic-plastic structural stability behaviour of arches is analysed in the present work.The application of the developed mathematical model, allows to determine the elastic-plastic equilibrium paths, looking for critical points, bifurcation or limit, along those paths, associated to the critical load, in case it comes to happen.The equilibrium paths in the elastic-plastic behaviour when compared with the paths in the linear elastic behaviour, may show that, due to influence of the material plasticity, modifications paths appear and consequently alterations in the values of its critical loads.
Resumo:
The glued-laminated lumber (glulam) technique is an efficient process for making rational use of wood. Fiber-Reinforced Polymers (FRPs) associated with glulam beams provide significant gains in terms of strength and stiffness, and also alter the mode of rupture of these structural elements. In this context, this paper presents a theoretical model for designing reinforced glulam beams. The model allows for the calculation of the bending moment, the hypothetical distribution of linear strains along the height of the beam, and considers the wood has a linear elastic fragile behavior in tension parallel to the fibers and bilinear in compression parallel to the fibers, initially elastic and subsequently inelastic, with a negative decline in the stress-strain diagram. The stiffness was calculated by the transformed section method. Twelve non-reinforced and fiberglass reinforced glulam beams were evaluated experimentally to validate the proposed theoretical model. The results obtained indicate good congruence between the experimental and theoretical values.
Resumo:
This work present a study of glulam beams reinforced with FRP. It was developed a theoretical model that calculates strength and stiffness of the beams. The model allows for the calculation of the bending moment, the hypothetical distribution of linear strains along the height of the beam, and considers the wood has a linear elastic fragile behavior in tension parallel to the fibers and bilinear in compression parallel to the fibers, initially elastic and subsequently inelastic, with a negative decline in the stress-strain diagram. The stiffness was calculated by the transformed section method. Twelve non-reinforced and fiberglass reinforced glulam beams were evaluated experimentally to validate the proposed theoretical model. The results obtained indicate good congruence between the experimental and theoretical values.
Resumo:
Due to their high hardness and wear resistance, Si3N4 based ceramics are one of the most suitable cutting tool materials for machining cast iron, nickel alloys and hardened steels. However, their high degree of brittleness usually leads to inconsistent results and sudden catastrophic failures. This necessitates a process optimization when machining superalloys with Si3N4 based ceramic cutting tools. The tools are expected to withstand the heat and pressure developed when machining at higher cutting conditions because of their high hardness and melting point. This paper evaluates the performance of α-SiAlON tool in turning Ti-6Al-4V alloy at high cutting conditions, up to 250 m min-1, without coolant. Tool wear, failure modes and temperature were monitored to access the performance of the cutting tool. Test results showed that the performance of α-SiAl0N tool, in terms of tool life, at the cutting conditions investigated is relatively poor due probably to rapid notching and excessive chipping of the cutting edge. These facts are associated with adhesion and diffusion wear rate that tends to weaken the bond strength of the cutting tool.
Turning of compacted graphite iron using commercial tiN coated Si 3N4 under dry machining conditions
Resumo:
Due to their high hardness and wear resistance Si3N4 based ceramics are one of the most suitable cutting tool materials for machining hardened materials. Therefore, their high degree of brittleness usually leads to inconsistent results and sudden catastrophic failures. Improvement of the functional properties these tools and reduction of the ecological threats may be accomplished by employing the technology of putting down hard coatings on tools in the state-of-the-art PVD processes, mostly by improvement of the tribological contact conditions in the cutting zone and by eliminating the cutting fluids. However in this paper was used a Si3N4 based cutting tool commercial with a layer TiN coating. In this investigation, the performance of TiN coating was assessed on turning used to machine an automotive grade compacted graphite iron. As part of the study were used to characterise the performance of cutting tool, flank wear, temperature and roughness. The results showed that the layer TiN coating failed to dry compacted graphite iron under aggressive machining conditions. However, using the measurement of flank wear technique, the average tool life of was increased by VC=160 m/min.The latter was also observed using a toolmakers microscope and scanning electron microscopy (SEM).
Resumo:
This paper presents a control method for a class of continuous-time switched systems, using state feedback variable structure controllers. The method is applied to the control of a two-cell dc-dc buck converter and a control circuit design using the software PSpice is proposed. The design is based on Lyapunov-Metzler-SPR systems and the performance of the resulting control system is superior to that afforded by a recently-proposed alternative sliding-mode control technique. The dc-dc power converters are very used in industrial applications, for instance, in power systems of hybrid electric vehicles and aircrafts. Good results were obtained and the proposed design is also inexpensive because it uses electric components that can be easily found for the hardware implementation. Future researches on the subject include the hardware validation of the dc-dc converter controller and the robust control design of switched systems, with structural failures. © 2011 IEEE.
Resumo:
The aim of the present study was to assess the shear bond strength between a heat-polymerized denture base resin and acrylic resin teeth after immersion in different denture cleansers by simulating a 180-day use. Two acrylic teeth (Biotone, Biotone IPN, Dentsply Ind. e Com., Rio de Janeiro, RJ, Brazil) were chosen for bonding to a heat-polymerized denture base resin (Lucitone 550- Dentsply Ind. e Com., Rio de Janeiro, RJ, Brazil). Eighty specimens were produced and divided into eight groups (n=10) according to their experimental condition (distilled water, 2% chlorhexidine digluconate, 1% sodium hypochlorite and Corega Tabs). Shear bond strength tests (MPa) were performed with a universal testing machine at a crosshead speed of 0.5 mm/min. Data were analyzed by two-way analysis of variance (ANOVA) and Student-Newman-Keuls' multiple comparisons post hoc analysis (α=.05). The shear bond strength results revealed statistically significant differences between the groups. For the Biotone IPN tooth, significantly lower shear bond strength values were found for the group immersed in sodium-perborate solution (4.48±2.18 MPa) than for the group immersed in distilled water (control group) (10.83±1.84 MPa). For Biotone, significantly higher bond strength values (10.04±3.28 MPa) were found for the group immersed in Corega Tabs than for the control group (5.45±2.93 MPa). The immersion in denture cleanser solutions was more detrimental to the conventional acrylic denture tooth (Biotone) than to the highly cross-linked denture tooth (Biotone IPN). However, this effect was not observed for the groups immersed in Corega Tabs solution, regardless of the type of denture tooth. © 2013 Elsevier Ltd.
Resumo:
The methodology for fracture analysis of polymeric composites with scanning electron microscopes (SEM) is still under discussion. Many authors prefer to use sputter coating with a conductive material instead of applying low-voltage (LV) or variable-pressure (VP) methods, which preserves the original surfaces. The present work examines the effects of sputter coating with 25 nm of gold on the topography of carbon-epoxy composites fracture surfaces, using an atomic force microscope. Also, the influence of SEM imaging parameters on fractal measurements is evaluated for the VP-SEM and LV-SEM methods. It was observed that topographic measurements were not significantly affected by the gold coating at tested scale. Moreover, changes on SEM setup leads to nonlinear outcome on texture parameters, such as fractal dimension and entropy values. For VP-SEM or LV-SEM, fractal dimension and entropy values did not present any evident relation with image quality parameters, but the resolution must be optimized with imaging setup, accompanied by charge neutralization. © Wiley Periodicals, Inc.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)