753 resultados para Löw, LeopoldLöw, LeopoldLeopoldLöw
Resumo:
Using a transport model coupled with a phase-space coalescence after-burner we study the triton-He-3 relative and differential transverse flows in semi-central Sn-132 + Sn-124 reactions at a beam energy of 400 MeV/nucleon. We find that the triton-He-3 pairs carry interesting information about the density dependence of the nuclear symmetry energy. The t-He-3 relative flow can be used as a particularly powerful probe of the high-density behavior of the nuclear symmetry energy.
Resumo:
Dynamics of excited m-dichlorobenzene is investigated in real time by femtosecond pump-probe method, combined with time-of-flight mass spectrometric detection in a supersonic molecular beam. The yields of the parent ion and daughter ion C6H4CI+ are examined as a function of the delay between the 270 and 810 nm femtosecond laser pulses, respectively. The lifetime of the first singlet excited state S-1 of m-dichlorobenzene is measured. The origin of this daughter ion C6H4CI+ is discussed. The ladder mechanism is proposed to form the fragment ion. In addition, our experimental results exhibit a rapid damped sinusoidal oscillation over intermediate time delays, which is due to quantum beat effects.
Resumo:
In/HZSM-5/ln(2)O(3) catalyst that contained two different kinds of In induced by the impregnating and the physical mixing method respectively has shown remarkable activity for the CH4-SCR of NOx comparing with In/HZSM-5. The addition of In2O3 into In/HZSM-5 improved the NO conversion through enhancing the adsorption of NOx over In/HZSM-5.
Resumo:
Hydrogen peroxide (H2O2)/kerosene is a prospective bipropellant due to its high-energy content, high storage density, and environmentally benign properties. The possibility of making it hypergolic renders this option even more attracting. Self-ignitable H2O2/kerosene bipropellants were prepared by combining different candidate catalysts and promoters. Preliminary screening evaluations were conducted by using a dropping-test method. Propulsive performances of the combinations having passed satisfying dropping-test requirements were then investigated on a specially designed thrust engine. The results revealed that short ignition delay and reliable propulsion performances could be acquired in both steady-state and pulse-mode operations, and the combination of kerosene with additives and H2O2 of 90% concentration could still have good performances after 3 months storage time. It is expected that the combination of H2O2 and kerosene can be an efficacious alternative for storable toxic propellants used currently.
Resumo:
NaA zeolite membrane was successfully synthesized on a ceramic hollow fiber with an outer diameter of 400 mum, a thickness of 100 mum and an average pore radius of 0.1 mum. The as-synthesized membranes were characterized by XRD, SEM as well as gas permeation. A continuous C NaA zeolite membrane formed after a three-stage synthesis. The membrane thickness was similar to5 mum. Gas permeation data indicated that a relatively high quality NaA zeolite membrane formed on the ceramic hollow fiber support. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Conventional oven drying (COD) and supercritical drying (SCD) methods were applied to the preparation of Mn-substituted hexaaluminate (BaMnA(11)O(19-alpha)) catalysts. The effect of drying methods on phase composition, specific surface area, pore structure and combustion activity of the samples was investigated. The samples obtained by SCD have higher surface area, narrower pore size distribution, and higher combustion activity than those obtained by COD.
Resumo:
An attractive Fischer-Tropsch catalyst was prepared using an activated carbon as carrier to support cobalt based catalysts. Zr promoted Co/AC catalysts remarkably enhanced the activity and the selectivity toward diesel distillates and lower the methane selectivity. This modification may be attributed to specific behavior of activated carbon with high surface area and the weak interaction between metallic cobalt active sites and activated carbon. It was emphasized that the pore size of activated carbon played a very important role in restricting the growth of carbon chain to wax.
Resumo:
A novel family of hybrid catalyst with high turnover frequency (TOF) and high selectivity towards aldehydes for hydroformylation of olefins could be successfully approached through direct coordination with the PPh3 ligand to the highly dispersed Rh metal particle precursors. A further advantage is that the catalyst is easily prepared and recyclable. The results revealed that hydroformylation of olefins to aldehydes dominantly took place on the surface of PPh3 ligand modified Rh metal particles of the hybrid catalyst. It was found that the formation of chemical coordination bond between the Rh metal particles and the lone-pair electron of PPh3 was evident through the TG and P-31 NMR measurement. Moreover, the addition of PPh3 onto the Rh/SiO2 exert a significant influence on the adsorption state of reactant CO, H-2 and C2H4 on the PPh3-Rh/SiO2 sample, which probably lead to good catalytic performances for hydroformylation of olefins. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Heterogeneous PPh3-Rh/SiO2 catalysts for hydroformylation of olefins, prepared by direct doping of phosphine onto the heterogeneous Rh/SiO2 precursor, exhibited high activity and selectivity towards aldehydes, which originated from chemical coordination bond between the phosphine and Rh metal nantoparticles on the SiO2 support.
Resumo:
LaMnxAl12-xO19 catalysts were prepared from NH4OH and metal nitrates solutions. Supercritical drying (SCD) and conventional oven drying (CD) methods were used to extract the water in the hydrogel. The effects of drying methods on properties of the catalysts were investigated by means of TEM, N-2-adsorption, thermogravimetry (TG)-differential thermal analysis (DTA) and X-ray diffraction. SCD method is beneficial to maintain high surface area and improving catalytic activity for methane combustion of the catalyst. The specific surface area and pore volume of LaMn1Al11O19 catalyst prepared by SCD method are 28 m(2)/g and 0.23 cm(3)/g, respectively, and the ignition of methane could be carried out at 450degreesC. However, those of the CD catalyst prepared from the same precursor are 15 m(2)/g, 0.11 cm(3)/g and 530 degreesC, respectively. Suitable Mn content (0 less than or equal to x less than or equal to 2) could promote the formation of LaMnAl11O19 hexaaluminate, while further addition of Mn (2 less than or equal to x less than or equal to 6) cause the formation of LaMnO3. (C) 2003 Elsevier B.V All rights reserved.
Resumo:
An effective Mo-1 V(0.3)Te(0.23)Nb(0.12)Ox catalysts for the selective oxidation of propane to acrylic acid was successfully prepared by using rotavap method. The catalyst was characterized by XRD and shown to contain (V0.07Mo0.93)(5)O-14, (Nb0.09Mo0.91)O-2.8,3MoO(2)(.)Nb(2)O(5), Mo5TeO16 and/or TeMo4O13, Te4Nb2O13 and a new TeMO (TeVMoO or TeVNbMoO; M = Mo, V and Nb) crystalline phase as the major phase. Regardless of the intrinsic catalytic characteristics of the catalyst, the external reaction conditions would have strong effects on the catalytic performance for propane oxidation. So in this paper, the effects of reaction conditions were investigated and discussed, including temperature, space velocity, V(air)/V(C3H8) ratio and V(steam)/V(C3H8) ratio. A stability test was also carried out on Mo1V0.3Te0.23Nb0.12Ox catalyst. The experimental run was performed during 100 h under the optimized reaction conditions. During the 100 h of operation, propane conversion and acrylic acid selectivity remained at about 59 and 64%, respectively. (C) 2004 Elsevier B.V. All rights reserved.