981 resultados para Kui dragons, sea waves
Resumo:
Higher-order spectral analysis is used to detect the presence of secondary and tertiary forced waves associated with the nonlinearity of energetic swell observed in 8- and 13-m water depths. Higher-order spectral analysis techniques are first described and then applied to the field data, followed by a summary of the results.
Resumo:
Continuum, partial differential equation models are often used to describe the collective motion of cell populations, with various types of motility represented by the choice of diffusion coefficient, and cell proliferation captured by the source terms. Previously, the choice of diffusion coefficient has been largely arbitrary, with the decision to choose a particular linear or nonlinear form generally based on calibration arguments rather than making any physical connection with the underlying individual-level properties of the cell motility mechanism. In this work we provide a new link between individual-level models, which account for important cell properties such as varying cell shape and volume exclusion, and population-level partial differential equation models. We work in an exclusion process framework, considering aligned, elongated cells that may occupy more than one lattice site, in order to represent populations of agents with different sizes. Three different idealizations of the individual-level mechanism are proposed, and these are connected to three different partial differential equations, each with a different diffusion coefficient; one linear, one nonlinear and degenerate and one nonlinear and nondegenerate. We test the ability of these three models to predict the population level response of a cell spreading problem for both proliferative and nonproliferative cases. We also explore the potential of our models to predict long time travelling wave invasion rates and extend our results to two dimensional spreading and invasion. Our results show that each model can accurately predict density data for nonproliferative systems, but that only one does so for proliferative systems. Hence great care must be taken to predict density data for with varying cell shape.
Resumo:
In contextualising victims' experiences of policing in domestic violence situations in Singapore, two extreme but interrelated sets of responses have been observed. At one end of the continuum, criminal justice sanctions are strictly contingent upon victim willingness to initiate criminal proceedings against the perpetrator, and at the other, victims' rights, needs and preferences seem to be usurped by the justice system regardless of victims' choice. Neither of these positions takes victims' interests into account. Nor do they stem from an understanding of the sociocultural, economic and structural circumstances in which victims experienced violence, and continued to experience it, long after a police intervention. Data from the research revealed that criminalisation as an ideological and legally practical tool was not only rendered ineffective but irrelevant to the experiences of women in the Singaporean context.Two factors account for this phenomenon. First, the absence of support structures to achieve criminalisation and address victims' needs in the aftermath of criminalisation; second, the authoritative, paternalistic and patriarchal state impedes processes aimed at the empowerment of women victims.
Resumo:
Bioclastic flow deposits offshore from the Soufrie`re Hills volcano on Montserrat in the Lesser Antilles were deposited by the largest volume sediment flows near this active volcano in the last 26 kyr. The volume of these deposits exceeds that of the largest historic volcanic dome collapse in the world, which occurred on Montserrat in 2003. These flows were most probably generated by a large submarine slope failure of the carbonate shelf comprising the south west flank of Antigua or the east flank of Redonda; adjacent islands that are not volcanically active. The bioclastic flow deposits are relatively coarse-grained and either ungraded or poorly graded, and were deposited by non cohesive debris flow and high density turbidity currents. The bioclastic deposit often comprises multiple sub-units that cannot be correlated between core sites; some located just 2 km apart. Multiple sub-units in the bioclastic deposit result from either flow reflection, stacking of multiple debris flow lobes, and/or multi-stage collapse of the initial landslide. This study provides unusually precise constraints on the age of this mass flow event that occurred at ca 14 ka. Few large submarine landslides have been well dated, but the slope failures that have been dated are commonly associated with periods of rapid sea-level change.
Resumo:
Visual sea-floor mapping is a rapidly growing application for Autonomous Underwater Vehicles (AUVs). AUVs are well-suited to the task as they remove humans from a potentially dangerous environment, can reach depths human divers cannot, and are capable of long-term operation in adverse conditions. The output of sea-floor maps generated by AUVs has a number of applications in scientific monitoring: from classifying coral in high biological value sites to surveying sea sponges to evaluate marine environment health.
Resumo:
This volume represents teh second collection of working papers and articles by participants in the Higher Education Policy Project (HEPP), a project funded by the Australian Research Council and based in the Graduate School of Education at the University of Queensland. The first volume, 'Higher Education in Transition: Working Papers of the Higher Education Policy Project (Bella, McCollow and Knight, 1993), took the broad theme of "higher education in transition" in order to introduce readers the HEPP and give them some idea of the breadth of the research being pursued by the HEPP research team itself and by the cohort of post-graduate students also associated with the project. Since then, higher education has remained in transition. Stubborn and resurgent questions continue: such as what a university ought to be, what forms of research should be supported in a mass system, and how institutional accountability can be demonstrated. In differing ways and using a variety of research perspectives and methodologies, the contributors to this volume explore these and other questions of relevance to higher education today.
Resumo:
Extreme cold and heat waves, characterised by a number of cold or hot days in succession, place a strain on people’s cardiovascular and respiratory systems. The increase in deaths due to these waves may be greater than that predicted by extreme temperatures alone. We examined cold and heat waves in 99 US cities for 14 years (1987–2000) and investigated how the risk of death depended on the temperature threshold used to define a wave, and a wave’s timing, duration and intensity. We defined cold and heat waves using temperatures above and below cold and heat thresholds for two or more days. We tried five cold thresholds using the first to fifth percentiles of temperature, and five heat thresholds using the ninety-fifth to ninety-ninth percentiles. The extra wave effects were estimated using a two-stage model to ensure that their effects were estimated after removing the general effects of temperature. The increases in deaths associated with cold waves were generally small and not statistically significant, and there was even evidence of a decreased risk during the coldest waves. Heat waves generally increased the risk of death, particularly for the hottest heat threshold. Cold waves of a colder intensity or longer duration were not more dangerous. Cold waves earlier in the cool season were more dangerous, as were heat waves earlier in the warm season. In general there was no increased risk of death during cold waves above the known increased risk associated with cold temperatures. Cold or heat waves earlier in the cool or warm season may be more dangerous because of a build up in the susceptible pool or a lack of preparedness for cold or hot temperatures.
Resumo:
Models of cell invasion incorporating directed cell movement up a gradient of an external substance and carrying capacity-limited proliferation give rise to travelling wave solutions. Travelling wave profiles with various shapes, including smooth monotonically decreasing, shock-fronted monotonically decreasing and shock-fronted nonmonotone shapes, have been reported previously in the literature. The existence of tacticallydriven shock-fronted nonmonotone travelling wave solutions is analysed for the first time. We develop a necessary condition for nonmonotone shock-fronted solutions. This condition shows that some of the previously reported shock-fronted nonmonotone solutions are genuine while others are a consequence of numerical error. Our results demonstrate that, for certain conditions, travelling wave solutions can be either smooth and monotone, smooth and nonmonotone or discontinuous and nonmonotone. These different shapes correspond to different invasion speeds. A necessary and sufficient condition for the travelling wave with minimum wave speed to be nonmonotone is presented. Several common forms of the tactic sensitivity function have the potential to satisfy the newly developed condition for nonmonotone shock-fronted solutions developed in this work.
Resumo:
In most visual mapping applications suited to Autonomous Underwater Vehicles (AUVs), stereo visual odometry (VO) is rarely utilised as a pose estimator as imagery is typically of very low framerate due to energy conservation and data storage requirements. This adversely affects the robustness of a vision-based pose estimator and its ability to generate a smooth trajectory. This paper presents a novel VO pipeline for low-overlap imagery from an AUV that utilises constrained motion and integrates magnetometer data in a bi-objective bundle adjustment stage to achieve low-drift pose estimates over large trajectories. We analyse the performance of a standard stereo VO algorithm and compare the results to the modified vo algorithm. Results are demonstrated in a virtual environment in addition to low-overlap imagery gathered from an AUV. The modified VO algorithm shows significantly improved pose accuracy and performance over trajectories of more than 300m. In addition, dense 3D meshes generated from the visual odometry pipeline are presented as a qualitative output of the solution.
Resumo:
Cell invasion, characterised by moving fronts of cells, is an essential aspect of development, repair and disease. Typically, mathematical models of cell invasion are based on the Fisher–Kolmogorov equation. These traditional parabolic models can not be used to represent experimental measurements of individual cell velocities within the invading population since they imply that information propagates with infinite speed. To overcome this limitation we study combined cell motility and proliferation based on a velocity–jump process where information propagates with finite speed. The model treats the total population of cells as two interacting subpopulations: a subpopulation of left–moving cells, $L(x,t)$, and a subpopulation of right–moving cells, $R(x,t)$. This leads to a system of hyperbolic partial differential equations that includes a turning rate, $\Lambda \ge 0$, describing the rate at which individuals in the population change direction of movement. We present exact travelling wave solutions of the system of partial differential equations for the special case where $\Lambda = 0$ and in the limit that $\Lambda \to \infty$. For intermediate turning rates, $0 < \Lambda < \infty$, we analyse the travelling waves using the phase plane and we demonstrate a transition from smooth monotone travelling waves to smooth nonmonotone travelling waves as $\Lambda$ decreases through a critical value $\Lambda_{crit}$. We conclude by providing a qualitative comparison between the travelling wave solutions of our model and experimental observations of cell invasion. This comparison indicates that the small $\Lambda$ limit produces results that are consistent with experimental observations.
Resumo:
The Flightless Cormorant Phalacrocorax harrisi is restricted to c. 400 km of the western coastline of the Galápagos archipelago coinciding with the local occurrence of seasonal upwelling of oceanic currents. Individuals frequently make more than one breeding attempt per year, usually change mates, and when juveniles are raised, females desert them to the further care of their mates who complete the rearing alone. Here we report data from a ten-year historical study of a colony stretching c.2 km along the coast-line and representing c. 12% of the total population of the species. The number of clutches laid and juveniles fledged were linked to the occurrence of cold water in off-shore foraging grounds. Most Flightless Cormorants have attachments to local stretches of coastline several hundred metres long. However, a few birds travelled many kilometres, including between colonies, sometimes over open sea. We show that males invest more in nest-building and feeding of the offspring than their mates, and we relate this to the (presumed) in-bred nature of the colony and to male and female reproductive strategies. Our data validate a published demographic model of the species (Valle 1995).
Resumo:
It has been known since Rhodes Fairbridge’s first attempt to establish a global pattern of Holocene sea-level change by combining evidence from Western Australia and from sites in the northern hemisphere that the details of sea-level history since the Last Glacial Maximum vary considerably across the globe. The Australian region is relatively stable tectonically and is situated in the ‘far-field’ of former ice sheets. It therefore preserves important records of post-glacial sea levels that are less complicated by neotectonics or glacio-isostatic adjustments. Accordingly, the relative sea-level record of this region is dominantly one of glacio-eustatic (ice equivalent) sea-level changes. The broader Australasian region has provided critical information on the nature of post-glacial sea level, including the termination of the Last Glacial Maximum when sea level was approximately 125 m lower than present around 21,000–19,000 years BP, and insights into meltwater pulse 1A between 14,600 and 14,300 cal. yr BP. Although most parts of the Australian continent reveals a high degree of tectonic stability, research conducted since the 1970s has shown that the timing and elevation of a Holocene highstand varies systematically around its margin. This is attributed primarily to variations in the timing of the response of the ocean basins and shallow continental shelves to the increased ocean volumes following ice-melt, including a process known as ocean siphoning (i.e. glacio-hydro-isostatic adjustment processes). Several seminal studies in the early 1980s produced important data sets from the Australasian region that have provided a solid foundation for more recent palaeo-sea-level research. This review revisits these key studies emphasising their continuing influence on Quaternary research and incorporates relatively recent investigations to interpret the nature of post-glacial sea-level change around Australia. These include a synthesis of research from the Northern Territory, Queensland, New South Wales, South Australia and Western Australia. A focus of these more recent studies has been the re-examination of: (1) the accuracy and reliability of different proxy sea-level indicators; (2) the rate and nature of post-glacial sea-level rise; (3) the evidence for timing, elevation, and duration of mid-Holocene highstands; and, (4) the notion of mid- to late Holocene sea-level oscillations, and their basis. Based on this synthesis of previous research, it is clear that estimates of past sea-surface elevation are a function of eustatic factors as well as morphodynamics of individual sites, the wide variety of proxy sea-level indicators used, their wide geographical range, and their indicative meaning. Some progress has been made in understanding the variability of the accuracy of proxy indicators in relation to their contemporary sea level, the inter-comparison of the variety of dating techniques used and the nuances of calibration of radiocarbon ages to sidereal years. These issues need to be thoroughly understood before proxy sea-level indicators can be incorporated into credible reconstructions of relative sea-level change at individual locations. Many of the issues, which challenged sea-level researchers in the latter part of the twentieth century, remain contentious today. Divergent opinions remain about: (1) exactly when sea level attained present levels following the most recent post-glacial marine transgression (PMT); (2) the elevation that sea-level reached during the Holocene sea-level highstand; (3) whether sea-level fell smoothly from a metre or more above its present level following the PMT; (4) whether sea level remained at these highstand levels for a considerable period before falling to its present position; or (5) whether it underwent a series of moderate oscillations during the Holocene highstand.