912 resultados para Kreuzungsexperimente, Baculoviren, Yeast Two-Hybrid System, Resistenzmanagement, geschlechtsgebundene Vererbung


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plectin is a versatile cytolinker of the plakin family conferring cell resilience to mechanical stress in stratified epithelia and muscles. It acts as a critical organizer of the cytoskeletal system by tethering various intermediate filament (IF) networks through its C-terminal IF-binding domain (IFBD). Mutations affecting the IFBD cause devastating human diseases. Here, we show that serine 4642, which is located in the extreme C-terminus of plectin, is phosphorylated in different cell lines. Phosphorylation of S4642 decreased the ability of plectin IFBD to associate with various IFs, as assessed by immunofluorescence microscopy and cell fractionation studies, as well as in yeast two-hybrid assays. Plectin phosphorylated at S4642 was reduced at sites of IF network anchorage along cell-substrate contacts in both skin and cultured keratinocytes. Treatment of SK-MEL-2 and HeLa cells with okadaic acid increased plectin S4642 phosphorylation, suggesting that protein phosphatase 2A dephosphorylates this residue. Moreover, plectin S4642 phosphorylation was enhanced after cell treatment with EGF, phorbol ester, sorbitol and 8-bromo-cyclic AMP, as well as during wound healing and protease-mediated cell detachment. Using selective protein kinase inhibitors, we identified two different kinases that modulate the phosphorylation of plectin S4642 in HeLa cells: MNK2, which is downstream of the ERK1/2-dependent MAPK cascade, and PKA. Our study indicates that phosphorylation of S4642 has an important regulatory role in the interaction of plectin with IFs and identifies a novel link between MNK2 and the cytoskeleton.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catenins have diverse and powerful roles in embryogenesis, homeostasis or disease progression, as best exemplified by the well-known beta-catenin. The less studied delta-catenin likewise contains a central Armadillo-domain. In common with other p120 sub-class members, it acts in a variety of intracellular compartments and modulates cadherin stability, small GTPase activities and gene transcription. In mammals, delta-catenin exhibits neural specific expression, with its knock-out in mice correspondingly producing cognitive defects and synaptic dysfunctions. My work instead employed the amphibian, Xenopus laevis, to explore delta-catenin’s physiological functions in a distinct vertebrate system. Initial isolation and characterization indicated delta-catenin’s expression in Xenopus. Unlike the pattern observed for mammals, delta-catenin was detected in most adult Xenopus tissues, although enriched in embryonic structures of neural fate as visualized using RNA in-situ hybridization. To determine delta-catenin’s requirement in amphibian development, I employed anti-sense morpholinos to knock-down gene products, finding that delta-catenin depletion results in developmental defects in gastrulation, neural crest migration and kidney tubulogenesis, phenotypes that were specific based upon rescue experiments. In biochemical and cellular assays, delta-catenin knock-down reduced cadherin levels and cell adhesion, and impaired activation of RhoA and Rac1, small GTPases that regulate actin dynamics and morphogenetic movements. Indeed, exogenous C-cadherin, or dominant-negative RhoA or dominant-active Rac1, significantly rescued delta-catenin depletion. Thus, my results indicate delta-catenin’s essential roles in Xenopus development, with contributing functional links to cadherins and Rho family small G proteins. In examining delta-catenin’s nuclear roles, I identified delta-catenin as an interacting partner and substrate of the caspase-3 protease, which plays critical roles in apoptotic as well as non-apoptotic processes. Delta-catenin’s interaction with and sensitivity to caspase-3 was confirmed using assays involving its cleavage in vitro, as well as within Xenopus apoptotic extracts or mammalian cell lines. The cleavage site, a highly conserved caspase consensus motif (DELD) within Armadillo-repeat 6 of delta-catenin, was identified through peptide sequencing. Cleavage thus generates an amino- (1-816) and carboxyl-terminal (817-1314) fragment each containing about half of the central Armadillo-domain. I found that cleavage of delta-catenin both abolishes its association with cadherins, and impairs its ability to modulate small GTPases. Interestingly, the carboxyl-terminal fragment (817-1314) possesses a conserved putative nuclear localization signal that I found is needed to facilitate delta-catenin’s nuclear targeting. To probe for novel nuclear roles of delta-catenin, I performed yeast two-hybrid screening of a mouse brain cDNA library, resolving and then validating its interaction with an uncharacterized KRAB family zinc finger protein I named ZIFCAT. My results indicate that ZIFCAT is nuclear, and suggest that it may associate with DNA as a transcriptional repressor. I further determined that other p120 sub-class catenins are similarly cleaved by caspase-3, and likewise bind ZIFCAT. These findings potentially reveal a simple yet novel signaling pathway based upon caspase-3 cleavage of p120 sub-family members, facilitating the coordinate modulation of cadherins, small GTPases and nuclear functions. Together, my work suggested delta-catenin’s essential roles in Xenopus development, and has revealed its novel contributions to cell junctions (via cadherins), cytoskeleton (via small G proteins), and nucleus (via ZIFCAT). Future questions include the larger role and gene targets of delta-catenin in nucleus, and identification of upstream signaling events controlling delta-catenin’s activities in development or disease progression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A partial skb1 gene was originally isolated in a yeast two-hybrid screen for Shk1-interacting polypeptides. Shk1 is one of two Schizosaccharomyces pombe p21Cdc42/Rac-activated kinases (PAKs) and is an essential component of the Ras1-dependent signal transduction pathways regulating cell morphology and mating responses in fission yeast. After cloning the skb1 gene we found the Skb1 gene product to be a novel, nonessential protein lacking homology to previously characterized proteins. However the identification of Skb1 homologs in C. elegans, S. cerevisiae, and H. sapiens reveals evolution has conserved the skb1 gene. Fission yeast cells carrying a deletion of skb1 exhibit a defect in cell size but not mating abilities. This defect is suppressed by high copy shk1. Fission yeast overexpressing skb1 were found to undergo cell division at a length 1.5X greater than normal. In the two-hybrid system, Skb1 interacts with a subdomain of the Shk1 regulatory region distinct from that with which Cdc42 interacts, and forms a ternary complex with Shk1 and Cdc42. By use of yeast genetics, we have established a role for Skb1 as a positive regulator of Shk1. Co-overexpression of shk1 with skb1 was found to suppress the morphology defect, but not the sterility, of ras1Δ fission yeast. Thus, the function of Skb1 is restricted to a morphology control pathway. We determined that Skb1 functions as a negative regulator of mitosis and does this through a Shk1-dependent mechanism. The mitotic regulatory function of Skb1 and Shk1 was also partially dependent upon Wee1, a direct negative regulator of the cyclin-dependent kinase Cdc2. The role for Skb1 and Shk1 as mitotic regulators is the first connection from a PAK protein to control of the cell cycle. Furthermore, Skb1 is the first non-Cdc42/Rac PAK modulator to be identified. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

p53 is required for the maintenance of the genomic stability of cells. Mutations in the p53 tumor-suppressor gene occur in more than 50% of human cancers of diverse types. In addition, 70% of families with Li-Fraumeni syndrome have a germline mutation in p53, predisposing these individuals to multiple forms of cancer. In response to DNA damage, p53 becomes stabilized and activated. However the exact mechanism by which DNA damage signals the stabilization and activation of p53 still remains elusive. The biochemical activity of p53 that is required for tumor suppression, and presumably the cellular response to DNA damage, involves the ability of the protein to bind to specific DNA sequences and to function as a transcription factor. For the downstream targets, p53 transactivates many genes involved in growth arrest, apoptosis and DNA repair such as p21, Bax and GADD45, respectively. An open question in the field is how cells can determine the downstream effects of p53. ^ We hypothesize that, through its associated proteins, p53 can differentially transactivate its target genes, which determine its downstream effect. Additionally, p53 interacting proteins may be involved in signaling for the stabilization and activation of p53. Therefore, a key aspect to understanding p53 function is the identification and analysis of proteins that interact with it. We have employed the Sos recruitment system (SRS), a cytoplasmic yeast two-hybrid screen to identify p53 interacting proteins. The SRS is based on the ability of Sos to activate Ras when it becomes localized to the plasma membrane. The system takes advantage of an S. cerevisiae strain, cdc25-2 temperature sensitive mutant, harboring a mutation in Sos. In this strain, fusion proteins containing a truncated Sos will only localize to the membrane by protein-protein interaction, which allows growth at non-permissive temperature. This system allows the use of intact transcriptional activators such as p53. ^ To date, using a modified SRS library screen to identify p53 interacting proteins, I have identified p53 (known to interact with itself) and a novel p53-interacting protein (PIP). PIP is a specific p53 interacting protein in the SRS. The interaction of p53 and PIP was further confirmed by performing in vitro and in vivo binding assays. In the in vivo binding study, the interaction can only be detected in the presence of ionizing radiation suggesting that this interaction might be involved in DNA-damage induced p53-signalling pathway. After screening cDNA and genomic libraries, a full-length PIP-cDNA clone ( ∼ 3kb) was obtained which encodes a protein of 429 amino acids with calculated molecular weight of 46 kDa. The results of genebank search indicated that the PIP is an unidentified gene and contains a conserved ring-finger domain, which is present in a diverse family of regulatory proteins involved in different aspects of cellular function. Northern blot analysis revealed that the size of its messenge is approximately 3 kb preferentially expressed in brain, heart, liver and kidney. The PIP protein is mainly located in the cytoplasm as determined by the cellular localization of a green fluorescence fusion protein. Preliminary functional analysis revealed that PIP downregulated the transactivation activity of p53 on both p21 and mdm2 promoters. Thus, PIP may be a novel negative regulator of p53 subsequent to DNA damage. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sox9 is a transcription factor required for chondrocyte differentiation and cartilage formation. In an effort to identify SOX9 interacting protein(s), we screened a chondrocyte cDNA library with a modified yeast two-hybrid method, Son of Sevenless (SOS) recruitment system (SRS). The catalytic subunit of cyclic AMP-dependent protein kinase A (PKA-Cα) and a new long form of c-Maf transcription factor (Lc-Maf) were found to interact specifically with SOX9. We showed here that two PKA phosphorylation consensus sites of SOX9 could be phosphorylated by PKA in vitro as well as in vivo. PKA phosphorylation of SOX9 increases its DNA binding and transcriptional activities on a Col2a1 chondrocyte-specific enhancer. Mutations of these two PKA phosphorylation sites markedly decreased the activation of SOX9 by PKA. ^ To test whether parathyroid hormone-related peptide (PTHrP) signaling results in SOX9 phosphorylation, we generated a phosphospecific antibody that specifically recognizes SOX9 that is phosphorylated at serine 181 (S 181) one of the two consensus PKA phosphorylation sites. Addition of PTHrP to COS7 cells cotransfected with SOX9 and PTH/PTHrP receptor strongly increased phosphorylation of SOX9 at S181; this phosphorylation was blocked by a PKA-specific inhibitor. In similar experiments we showed that PTHrP increased the activity of a SOX9-dependent Col2a1 enhancer. This increase in activity was abolished when a SOX9 mutant was used containing serine-to-alanine substitution in the two consensus PKA phosphorylation sites of SOX9. Using our phosphospecific SOX9 antibody we showed by immunohistochemistry of mouse embryos that Sox9 phosphorylated at S181 was localized almost exclusively in the pre-hypertrophic zone of the growth plate, an area corresponding to the major site of expression of PTH/PTHrP receptor. In contrast, no phosphorylation of Sox9 at S181 was detected in growth plates of PTH/PTHrP receptor null mutant mice. Sox9, regardless of phosphorylation state, was present in all chondrocytes of both genotypes except in hypertrophic chondrocytes. Thus, Sox9 is a target of PTHrP signaling and the PTHrP-dependent phosphorylation of SOX9 enhances its transcriptional activity. ^ In order to investigate the in vivo function of Sox9 phosphorylation by PKA, we are generating a mouse model of mutant Sox9 harboring point mutations in two PKA phosphorylation sites. Preliminary results indicated that heterozygous mice containing half amount of mutant Sox9 that can not be phosphorylated by PKA have normal skeletal phenotype and homozygous mice are being generated. ^ Lc-Maf encodes an extra ten amino acids at the carboxyl terminus of c-Maf and contains a completely different 3′ untranslated region. The interaction between SOX9 and Lc-Maf was further confirmed by co-immunoprecipitation and GST-pull down assays, which mapped the interacting domains of SOX9 to HMG DNA binding domain and that of Lc-Maf to basic leusine zipper motif. In situ hybridizations showed that RNA of Lc-Maf coexpressed with those of Sox9 and Col2a1 in areas of mesenchymal condensation during the early stages of mouse embryo development. A DNA binding site of Lc-Maf was identified at the 5′ part of a 48-bp Col2a1 enhancer element near the HMG binding site of SOX9. Lc-Maf and SOX9 synergistically activated a luciferase reporter plasmid containing a Col2al enhancer and increased the transcription of endogenous Col2a1 gene. In summary, Lc-Maf is the first identified SOX9-interating protein during chondrogenesis and may be an important activator of Col2a1 gene. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The p21-activated kinase, Shk1, is an essential serine/threonine kinase required for normal cell polarity, proper mating response, and hyperosmotic stress response, in the fission yeast, Schizosaccharomyces pombe. This study has established a novel role for Shk1 as a microtubule regulator in fission yeast and, in addition, characterized a potential biological substrate of Shk1. Cells defective in Shk1 function were found to exhibit malformed interphase and mitotic microtubules, are hypersensitive to the microtubule disrupting drug thiabendazole (TBZ), and are cold sensitive for growth. Microtubule disruption by TBZ results in a significant reduction of Shk1 kinase activity, which is restored after cells are released from the drug, thus providing a correlation between Shk1 kinase activity and active microtubule polymerization. Consistent with a role for Shk1 as a microtubule regulator, GFP-Shk1 fusion proteins localize to interphase microtubules and mitotic microtubule spindles. Furthermore, loss of Tea1, a presumptive microtubule regulator in fission yeast, exacerbates the growth and microtubule defects of cells deficient in Shk1 function, and results in illicit Shk1 localization. Moreover, loss of the Cdc2 inhibitory kinase Wee1, which has been implicated as a mediator of the Shk1 pathway, leads to significant microtubule defects. Intriguingly, Wee1 protein levels are markedly reduced both by partial loss of Shk1 function and by treatment with TBZ. These results suggest that Shk1 is required for proper regulation of microtubule dynamics in fission yeast and may interact with Tea1 and Wee1 in this regulatory process. ^ To further understand Shk1 function in fission yeast, a yeast two-hybrid screen for proteins that interact with the Shk1 catalytic domain was performed. This screen led to the identification of a novel protein, Skb10 (for S&barbelow;hk1 k&barbelow;inase b&barbelow;inding protein 10). Coprecipitation experiments demonstrated that Skb10 associates with Shk1 in S. pombe cells. (Abstract shortened by UMI.) ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PV Off-Grid systems have demonstrated to be a good solution for the electrification of remote areas [1]. A hybrid system is one kind of these systems. The principal characteristic is that it uses PV as the main generator and has a backup power supply, like a diesel generator, for instance, that is used when the CPV generation is not enough to meet demand. To study the use of CPV in these systems, ISFOC has installed a demonstration hybrid system at its headquarters. This hybrid system uses CPV technology as main generator and the utility grid as the backup generator. A group of batteries have been mounted as well to store the remaining energy from the CPV generator when nedeed. The energy flows are managed by a SMA system based on Sunny Island inverters and a Multicluster-Box (figure 1). The Load is the air-conditioning system of the building, as it has a consumption profile higher than the CPV generator and can be controlled by software [2]. The first results of this system, as well as the first chances of improvement, as the need of a bigger CPV generator and a better management of the energy stored in the batteries, are presented in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La semilla es el órgano que garantiza la propagación y continuidad evolutiva de las plantas espermatofitas y constituye un elemento indispensable en la alimentación humana y animal. La semilla de cereales acumula en el endospermo durante la maduración, mayoritariamente, almidón y proteínas de reserva. Estas reservas son hidrolizadas en la germinación por hidrolasas sintetizadas en la aleurona en respuesta a giberelinas (GA), siendo la principal fuente de energía hasta que la plántula emergente es fotosintéticamente activa. Ambas fases del desarrollo de la semilla, están reguladas por una red de factores de transcripción (TF) que unen motivos conservados en cis- en los promotores de sus genes diana. Los TFs son proteínas que han desempeñado un papel central en la evolución y en el proceso de domesticación, siendo uno de los principales mecanismos de regulación génica; en torno al 7% de los genes de plantas codifican TFs. Atendiendo al motivo de unión a DNA, éstos, se han clasificado en familias. La familia DOF (DNA binding with One Finger) participa en procesos vitales exclusivos de plantas superiores y sus ancestros cercanos (algas, musgos y helechos). En las semillas de las Triticeae (subfamilia Pooideae), se han identificado varias proteínas DOF que desempeñan un papel fundamental en la regulación de la expresión génica. Brachypodium distachyon es la primera especie de la subfamilia Pooideae cuyo genoma (272 Mbp) ha sido secuenciado. Su pequeño tamaño, ciclo de vida corto, y la posibilidad de ser transformado por Agrobacterium tumefaciens (plásmido Ti), hacen que sea el sistema modelo para el estudio de cereales de la tribu Triticeae con gran importancia agronómica mundial, como son el trigo y la cebada. En este trabajo, se han identificado 27 genes Dof en el genoma de B. distachyon y se han establecido las relaciones evolutivas entre estos genes Dof y los de cebada (subfamilia Pooideae) y de arroz (subfamilia Oryzoideae), construyendo un árbol filogenético en base al alineamiento múltiple del dominio DOF. La cebada contiene 26 genes Dof y en arroz se han anotado 30. El análisis filogenético establece cuatro grupos de genes ortólogos (MCOGs: Major Clusters of Orthologous Genes), que están validados por motivos conservados adicionales, además del dominio DOF, entre las secuencias de las proteínas de un mismo MCOG. El estudio global de expresión en diferentes órganos establece un grupo de nueve genes BdDof expresados abundantemente y/o preferencialmente en semillas. El estudio detallado de expresión de estos genes durante la maduración y germinación muestra que BdDof24, ortólogo putativo a BPBF-HvDOF24 de cebada, es el gen más abundante en las semillas en germinación de B. distachyon. La regulación transcripcional de los genes que codifican hidrolasas en la aleurona de las semillas de cereales durante la post‐germinación ha puesto de manifiesto la existencia en sus promotores de un motivo tripartito en cis- conservado GARC (GA-Responsive Complex), que unen TFs de la clase MYB-R2R3, DOF y MYBR1-SHAQKYF. En esta tesis, se ha caracterizado el gen BdCathB de Brachypodium que codifica una proteasa tipo catepsina B y es ortólogo a los genes Al21 de trigo y HvCathB de cebada, así como los TFs responsables de su regulación transcripcional BdDOF24 y BdGAMYB (ortólogo a HvGAMYB). El análisis in silico del promotor BdCathB ha identificado un motivo GARC conservado, en posición y secuencia, con sus ortólogos en trigo y cebada. La expresión de BdCathB se induce durante la germinación, así como la de los genes BdDof24 y BdGamyb. Además, los TFs BdDOF24 y BdGAMYB interaccionan en el sistema de dos híbridos de levadura e in planta en experimentos de complementación bimolecular fluorescente. En capas de aleurona de cebada, BdGAMYB activa el promotor BdCathB, mientras que BdDOF24 lo reprime; este resultado es similar al obtenido con los TFs ortólogos de cebada BPBF-HvDOF24 y HvGAMYB. Sin embargo, cuando las células de aleurona se transforman simultáneamente con los dos TFs, BdDOF24 tiene un efecto aditivo sobre la trans-activación mediada por BdGAMYB, mientras que su ortólogo BPBF-HvDOF24 produce el efecto contrario, revirtiendo el efecto de HvGAMYB sobre el promotor BdCathB. Las diferencias entre las secuencias deducidas de las proteínas BdDOF24 y BPBF-HvDOF24 podrían explicar las funciones opuestas que desempeñan en su interacción con GAMYB. Resultados preliminares con líneas de inserción de T-DNA y de sobre-expresión estable de BdGamyb, apoyan los resultados obtenidos en expresión transitoria. Además las líneas homocigotas knock-out para el gen BdGamyb presentan alteraciones en anteras y polen y no producen semillas viables. ABSTRACT The seed is the plant organ of the spermatophytes responsible for the dispersion and survival in the course of evolution. In addition, it constitutes one of the most importan elements of human food and animal feed. The main reserves accumulated in the endosperm of cereal seeds through the maturation phase of development are starch and proteins. Its degradation by hydrolases synthetized in aleurone cells in response to GA upon germination provides energy, carbon and nitrogen to the emerging seedling before it acquires complete photosynthetic capacity. Both phases of seed development are controlled by a network of transcription factors (TFs) that interact with specific cis- elements in the promoters of their target genes. TFs are proteins that have played a central role during evolution and domestication, being one of the most important regulatory mechanisms of gene expression. Around 7% of genes in plant genomes encode TFs. Based on the DNA binding motif, TFs are classified into families. The DOF (DNA binding with One Finger) family is involved in specific processes of plants and its ancestors (algae, mosses and ferns). Several DOF proteins have been described to play important roles in the regulation of genes in seeds of the Triticeae tribe (Pooideae subfamily). Brachypodium distachyon is the first member of the Pooideae subfamily to be sequenced. Its small size and compact structured genome (272 Mbp), the short life cycle, small plant size and the possibility of being transformed with Agrobacterium tumefaciens (Ti-plasmid) make Brachypodium the model system for comparative studies within cereals of the Triticeae tribe that have big economic value such as wheat and barley. In this study, 27 Dof genes have been identified in the genome of B. distachyon and the evolutionary relationships among these Dof genes and those frome barley (Pooideae subfamily) and those from rice (Oryzoideae subfamily) have been established by building a phylogenetic tree based on the multiple alignment of the DOF DNA binding domains. The barley genome (Hordeum vulgare) contains 26 Dof genes and in rice (Oryza sativa) 30 genes have been annotated. The phylogenetic analysis establishes four Major Clusters of Orthologous Genes (MCOGs) that are supported by additional conserved motives out of the DOF domain, between proteins of the same MCOG. The global expression study of BdDof genes in different organs and tissues classifies BdDof genes into two groups; nine of the 27 BdDof genes are abundantly or preferentially expressed in seeds. A more detailed expression analysis of these genes during seed maturation and germination shows that BdDof24, orholog to barley BPBF-HvDof24, is the most abundantly expressed gene in germinating seeds. Transcriptional regulation studies of genes that encode hydrolases in aleurone cells during post-germination of cereal seeds, have identified in their promoters a tripartite conserved cis- motif GARC (GA-Responsive Complex) that binds TFs of the MYB-R2R3, DOF and MYBR1-SHAQKYF families. In this thesis, the characterization of the BdCathB gene, encoding a Cathepsin B-like protease and that is ortholog to the wheat Al21 and the barley HvCathB genes, has been done and its transcriptional regulation by the TFs BdDOF24 and BdGAMYB (ortholog to HvGAMYB) studied. The in silico analysis of the BdCathB promoter sequence has identified a GARC motif. BdCathB expression is induced upon germination, as well as, those of BdDof24 and BdGamyb genes. Moreover, BdDOF24 and BdGAMYB interact in yeast (Yeast 2 Hybrid System, Y2HS) and in planta (Bimolecular Fluorecence Complementation, BiFC). In transient assays in aleurone cells, BdGAMYB activates the BdCathB promoter, whereas BdDOF24 is a transcriptional repressor, this result is similar to that obtained with the barley orthologous genes BPBF-HvDOF24 and HvGAMYB. However, when aleurone cells are simultaneously transformed with both TFs, BdDOF24 has an additive effect to the trans-activation mediated by BdGAMYB, while its ortholog BPBF-HvDOF24 produces an opposite effect by reducing the HvGAMYB activation of the BdCathB promoter. The differences among the deduced protein sequences between BdDOF24 and BPBF-HvDOF24 could explain their opposite functions in the interaction with GAMYB protein. Preliminary results of T-DNA insertion (K.O.) and stable over-expression lines of BdGamyb support the data obtained in transient expression assays. In addition, the BdGamyb homozygous T-DNA insertion (K.O.) lines have anther and pollen alterations and they do not produce viable seeds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A photovoltaic (PV) hybrid system combines PV with other forms of electricity generation, usually a diesel generator. The system presented in this paper uses concentration photovoltaic (CPV) as the main generator in combination with a storage system and the grid, configured as the backup power supply. The load of the system consists of an air conditioning system of an office building. This paper presents the results obtained from the first months of operation of the CPV hybrid system installed at Instituto de Sistemas Fotovoltaicos de Concentración facilities together with exhaustive simulations in order to model the system behaviour and be able to improve the self-consumption ratio. This system represents a first approach to the use of a CPV in office buildings complemented by an existing AC-coupled hybrid system. The contribution of this paper to the analysis of this new system and the existing tools available for its simulation, at least a part of it, can be considered as a starting point for the development of these kinds of systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Yeast two-hybrid and genetic interaction screens indicate that Bir1p, a yeast protein containing phylogenetically conserved antiapoptotic repeat domains called baculovirus inhibitor of apoptosis repeats (BIRs), is involved in chromosome segregation events. In the two-hybrid screen, Bir1p specifically interacts with Ndc10p, an essential component of the yeast kinetochore. Although Bir1p carries two BIR motifs in the N-terminal region, the C-terminal third of the protein is sufficient to provide strong interaction with Ndc10p and moderate interaction with Skp1p, another essential component of the yeast kinetochore. In addition, deletion of BIR1 is synthetically lethal with deletion of CBF1 or CTF19, genes specifying two other components of the yeast kinetochore. Yeast cells deleted of BIR1 have a chromosome-loss phenotype, which can be completely rescued by elevating NDC10 dosage. Furthermore, overexpression of either full-length or the C-terminal region of Bir1p can efficiently suppress the chromosome-loss phenotype of both bir1Δ null and skp1-4 mutants. Our data suggest that Bir1p participates in chromosome segregation events, either directly or via interaction with kinetochore proteins, and these effects are apparently not mediated by the BIR domains of Bir1p.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rho1p is a yeast homolog of mammalian RhoA small GTP-binding protein. Rho1p is localized at the growth sites and required for bud formation. We have recently shown that Bni1p is a potential target of Rho1p and that Bni1p regulates reorganization of the actin cytoskeleton through interactions with profilin, an actin monomer-binding protein. Using the yeast two-hybrid screening system, we cloned a gene encoding a protein that interacted with Bni1p. This protein, Spa2p, was known to be localized at the bud tip and to be implicated in the establishment of cell polarity. The C-terminal 254 amino acid region of Spa2p, Spa2p(1213–1466), directly bound to a 162-amino acid region of Bni1p, Bni1p(826–987). Genetic analyses revealed that both the bni1 and spa2 mutations showed synthetic lethal interactions with mutations in the genes encoding components of the Pkc1p-mitogen-activated protein kinase pathway, in which Pkc1p is another target of Rho1p. Immunofluorescence microscopic analysis showed that Bni1p was localized at the bud tip in wild-type cells. However, in the spa2 mutant, Bni1p was not localized at the bud tip and instead localized diffusely in the cytoplasm. A mutant Bni1p, which lacked the Rho1p-binding region, also failed to be localized at the bud tip. These results indicate that both Rho1p and Spa2p are involved in the localization of Bni1p at the growth sites where Rho1p regulates reorganization of the actin cytoskeleton through Bni1p.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A mutation in the Schizosaccharomyces pombe sid4+ (septation initiation defective) gene was isolated in a screen for mutants defective in cytokinesis. We have cloned sid4+ and have found that sid4+ encodes a previously unknown 76.4-kDa protein that localizes to the spindle pole body (SPB) throughout the cell cycle. Sid4p is required for SPB localization of key regulators of septation initiation, including the GTPase Spg1p, the protein kinase Cdc7p, and the GTPase-activating protein Byr4p. An N-terminally truncated Sid4p mutant does not localize to SPBs and when overproduced acts as a dominant-negative mutant by titrating endogenous Sid4p and Spg1p from the SPB. Conversely, the Sid4p N-terminal 153 amino acids are sufficient for SPB localization. Biochemical studies demonstrate that Sid4p interacts with itself, and yeast two-hybrid analysis shows that its self-interaction domain lies within the C-terminal half of the protein. Our data indicate that Sid4p SPB localization is a prerequisite for the execution of the Spg1p signaling cascade.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Snf1 protein kinase family has been conserved in eukaryotes. In the yeast Saccharomyces cerevisiae, Snf1 is essential for transcription of glucose-repressed genes in response to glucose starvation. The direct interaction between Snf1 and its activating subunit, Snf4, within the kinase complex is regulated by the glucose signal. Glucose inhibition of the Snf1-Snf4 interaction depends on protein phosphatase 1 and its targeting subunit, Reg1. Here we show that Reg1 interacts with the Snf1 catalytic domain in the two-hybrid system. This interaction increases in response to glucose limitation and requires the conserved threonine in the activation loop of the kinase, a putative phosphorylation site. The inhibitory effect of Reg1 appears to require the Snf1 regulatory domain because a reg1Δ mutation no longer relieves glucose repression of transcription when Snf1 function is provided by the isolated catalytic domain. Finally, we show that abolishing the Snf1 catalytic activity by mutation of the ATP-binding site causes elevated, constitutive interaction with Reg1, indicating that Snf1 negatively regulates its own interaction with Reg1. We propose a model in which protein phosphatase 1, targeted by Reg1, facilitates the conformational change of the kinase complex from its active state to the autoinhibited state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Huntington's disease (HD) is a neurodegenerative disease caused by polyglutamine expansion in the protein huntingtin (htt). Pathogenesis in HD appears to involve the formation of ubiquitinated neuronal intranuclear inclusions containing N-terminal mutated htt, abnormal protein interactions, and the aggregate sequestration of a variety of proteins (noticeably, transcription factors). To identify novel htt-interacting proteins in a simple model system, we used a yeast two-hybrid screen with a Caenorhabditis elegans activation domain library. We found a predicted WW domain protein (ZK1127.9) that interacts with N-terminal fragments of htt in two-hybrid tests. A human homologue of ZK1127.9 is CA150, a transcriptional coactivator with a N-terminal insertion that contains an imperfect (Gln-Ala)38 tract encoded by a polymorphic repeat DNA. CA150 interacted in vitro with full-length htt from lymphoblastoid cells. The expression of CA150, measured immunohistochemically, was markedly increased in human HD brain tissue compared with normal age-matched human brain tissue, and CA150 showed aggregate formation with partial colocalization to ubiquitin-positive aggregates. In 432 HD patients, the CA150 repeat length explains a small, but statistically significant, amount of the variability in the onset age. Our data suggest that abnormal expression of CA150, mediated by interaction with polyglutamine-expanded htt, may alter transcription and have a role in HD pathogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein–protein interaction plays a major role in all biological processes. The currently available genetic methods such as the two-hybrid system and the protein recruitment system are relatively limited in their ability to identify interactions with integral membrane proteins. Here we describe the development of a reverse Ras recruitment system (reverse RRS), in which the bait used encodes a membrane protein. The bait is expressed in its natural environment, the membrane, whereas the protein partner (the prey) is fused to a cytoplasmic Ras mutant. Protein–protein interaction between the proteins encoded by the prey and the bait results in Ras membrane translocation and activation of a viability pathway in yeast. We devised the expression of the bait and prey proteins under the control of dual distinct inducible promoters, thus enabling a rapid selection of transformants in which growth is attributed solely to specific protein–protein interaction. The reverse RRS approach greatly extends the usefulness of the protein recruitment systems and the use of integral membrane proteins as baits. The system serves as an attractive approach to explore novel protein–protein interactions with high specificity and selectivity, where other methods fail.