193 resultados para Knots
Resumo:
La madera de castaño de procedencia española no está presente como material estructural en la norma europea EN 1912, y por lo tanto no está asignada a ninguna clase resistente como sí lo están otras especies españolas. Por ello, en el presente trabajo se realizó una caracterización de madera aserrada de castaño de Asturias con fines estructurales, realizando los ensayos según la norma UNE EN 408:2004, y calculando sus valores característicos según la norma UNE EN 384:2010. Los valores obtenidos permitieron asignar una clase resistente de las establecidas en la norma UNE EN 338:2010. Fueron evaluadas un total de 260 probetas de dos secciones (40x100 y 40x150 mm) siendo asignada una clase resistente D24, resultando la densidad y la resistencia a flexión los parámetros limitantes y observándose un valor de módulo de elasticidad superior al correspondiente a dicha clase. La relación entre los módulo de elasticidad longitudinal y transversal obtenidos experimentalmente fue de 10 aproximadamente, mientras que la normativa establece, como valor genérico, 16. Se observó que la singularidad de la madera que provocó un mayor porcentaje de rotura fue la presencia de nudos, presentando estas probetas un valor de resistencia significativamente menor. Chestnut timber from Spain is not included as a structural timber in the European standard EN 1912 nor is it assigned to any strength class like other Spanish species. Therefore, a characterization of structural chestnut timber from Asturias was made according to the UNE EN 408:2004, and the characteristic values were calculated according to the UNE EN 384:2010. The values obtained allowed the assignment of a strength class according to UNE EN 338:2010. 260 samples of two sections (40x100 and 40x150 mm) were tested and a D24 strength class was assinged. Density and bending strength were the limiting parameters, and the value of modulus of elasticity was higher than the values asssigned to D24. The relationship between modulus of elasticity and the shear modulus obtained was approximately equal to 10, while this value in the UNE EN 384:2010 is set at 16. The characteristic of the wood which caused a higher percentage of failure was the presence of knots, resulting in significantly lower resistance values.
Resumo:
Homogeneous links were introduced by Peter Cromwell, who pr oved that the projection surface of these links, that given by the Seifert al- gorithm, has minimal genus. Here we provide a different proof , with a geometric rather than combinatorial flavor. To do this, we fir st show a direct relation between the Seifert matrix and the decompo sition into blocks of the Seifert graph. Precisely, we prove that the Sei fert matrix can be arranged in a block triangular form, with small boxes in th e diagonal corresponding to the blocks of the Seifert graph. Then we pro ve that the boxes in the diagonal has non-zero determinant, by looking a t an explicit matrix of degrees given by the planar structure of the Seifer t graph. The paper contains also a complete classification of the homogen eous knots of genus one.
Resumo:
Los fieltros son una familia de materiales textiles constituidos por una red desordenada de fibras conectadas por medio de enlaces térmicos, químicos o mecánicos. Presentan menor rigidez y resistencia (al igual que un menor coste de procesado) que sus homólogos tejidos, pero mayor deformabilidad y capacidad de absorción de energía. Los fieltros se emplean en diversas aplicaciones en ingeniería tales como aislamiento térmico, geotextiles, láminas ignífugas, filtración y absorción de agua, impacto balístico, etc. En particular, los fieltros punzonados fabricados con fibras de alta resistencia presentan una excelente resistencia frente a impacto balístico, ofreciendo las mismas prestaciones que los materiales tejidos con un tercio de la densidad areal. Sin embargo, se sabe muy poco acerca de los mecanismos de deformación y fallo a nivel microscópico, ni sobre como influyen en las propiedades mecánicas del material. Esta carencia de conocimiento dificulta la optimización del comportamiento mecánico de estos materiales y también limita el desarrollo de modelos constitutivos basados en mecanismos físicos, que puedan ser útiles en el diseño de componentes estructurales. En esta tesis doctoral se ha llevado a cabo un estudio minucioso con el fin de determinar los mecanismos de deformación y las propiedades mecánicas de fieltros punzonados fabricados con fibras de polietileno de ultra alto peso molecular. Los procesos de deformación y disipación de energía se han caracterizado en detalle por medio de una combinación de técnicas experimentales (ensayos mecánicos macroscópicos a velocidades de deformación cuasi-estáticas y dinámicas, impacto balístico, ensayos de extracción de una o múltiples fibras, microscopía óptica, tomografía computarizada de rayos X y difracción de rayos X de gran ángulo) que proporcionan información de los mecanismos dominantes a distintas escalas. Los ensayos mecánicos macroscópicos muestran que el fieltro presenta una resistencia y ductilidad excepcionales. El estado inicial de las fibras es curvado, y la carga se transmite por el fieltro a través de una red aleatoria e isótropa de nudos creada por el proceso de punzonamiento, resultando en la formación de una red activa de fibra. La rotación y el estirado de las fibras activas es seguido por el deslizamiento y extracción de la fibra de los puntos de anclaje mecánico. La mayor parte de la resistencia y la energía disipada es proporcionada por la extracción de las fibras activas de los nudos, y la fractura final tiene lugar como consecuencia del desenredo total de la red en una sección dada donde la deformación macroscópica se localiza. No obstante, aunque la distribución inicial de la orientación de las fibras es isótropa, las propiedades mecánicas resultantes (en términos de rigidez, resistencia y energía absorbida) son muy anisótropas. Los ensayos de extracción de múltiples fibras en diferentes orientaciones muestran que la estructura de los nudos conecta más fibras en la dirección transversal en comparación con la dirección de la máquina. La mejor interconectividad de las fibras a lo largo de la dirección transversal da lugar a una esqueleto activo de fibras más denso, mejorando las propiedades mecánicas. En términos de afinidad, los fieltros deformados a lo largo de la dirección transversal exhiben deformación afín (la deformación macroscópica transfiere directamente a las fibras por el material circundante), mientras que el fieltro deformado a lo largo de la dirección de la máquina presenta deformación no afín, y la mayor parte de la deformación macroscópica no es transmitida a las fibras. A partir de estas observaciones experimentales, se ha desarrollado un modelo constitutivo para fieltros punzonados confinados por enlaces mecánicos. El modelo considera los efectos de la deformación no afín, la conectividad anisótropa inducida durante el punzonamiento, la curvatura y re-orientación de la fibra, así como el desenredo y extracción de la fibra de los nudos. El modelo proporciona la respuesta de un mesodominio del material correspondiente al volumen asociado a un elemento finito, y se divide en dos bloques. El primer bloque representa el comportamiento de la red y establece la relación entre el gradiente de deformación macroscópico y la respuesta microscópica, obtenido a partir de la integración de la respuesta de las fibras en el mesodominio. El segundo bloque describe el comportamiento de la fibra, teniendo en cuenta las características de la deformación de cada familia de fibras en el mesodominio, incluyendo deformación no afín, estiramiento, deslizamiento y extracción. En la medida de lo posible, se ha asignado un significado físico claro a los parámetros del modelo, por lo que se pueden identificar por medio de ensayos independientes. Las simulaciones numéricas basadas en el modelo se adecúan a los resultados experimentales de ensayos cuasi-estáticos y balísticos desde el punto de vista de la respuesta mecánica macroscópica y de los micromecanismos de deformación. Además, suministran información adicional sobre la influencia de las características microstructurales (orientación de la fibra, conectividad de la fibra anisótropa, afinidad, etc) en el comportamiento mecánico de los fieltros punzonados. Nonwoven fabrics are a class of textile material made up of a disordered fiber network linked by either thermal, chemical or mechanical bonds. They present lower stiffness and strength (as well as processing cost) than the woven counterparts but much higher deformability and energy absorption capability and are used in many different engineering applications (including thermal insulation, geotextiles, fireproof layers, filtration and water absorption, ballistic impact, etc). In particular, needle-punched nonwoven fabrics manufactured with high strength fibers present an excellent performance for ballistic protection, providing the same ballistic protection with one third of the areal weight as compared to dry woven fabrics. Nevertheless, very little is known about their deformation and fracture micromechanisms at the microscopic level and how they contribute to the macroscopic mechanical properties. This lack of knowledge hinders the optimization of their mechanical performance and also limits the development of physically-based models of the mechanical behavior that can be used in the design of structural components with these materials. In this thesis, a thorough study was carried out to ascertain the micromechanisms of deformation and the mechanical properties of a needle-punched nonwoven fabric made up by ultra high molecular weight polyethylene fibers. The deformation and energy dissipation processes were characterized in detail by a combination of experimental techniques (macroscopic mechanical tests at quasi-static and high strain rates, ballistic impact, single fiber and multi fiber pull-out tests, optical microscopy, X-ray computed tomography and wide angle X-ray diffraction) that provided information of the dominant mechanisms at different length scales. The macroscopic mechanical tests showed that the nonwoven fabric presented an outstanding strength and energy absorption capacity. It was found that fibers were initially curved and the load was transferred within the fabric through the random and isotropic network of knots created by needlepunching, leading to the formation of an active fiber network. Uncurling and stretching of the active fibers was followed by fiber sliding and pull-out from the entanglement points. Most of the strength and energy dissipation was provided by the extraction of the active fibers from the knots and final fracture occurred by the total disentanglement of the fiber network in a given section at which the macroscopic deformation was localized. However, although the initial fiber orientation distribution was isotropic, the mechanical properties (in terms of stiffness, strength and energy absorption) were highly anisotropic. Pull-out tests of multiple fibers at different orientations showed that structure of the knots connected more fibers in the transverse direction as compared with the machine direction. The better fiber interconnection along the transverse direction led to a denser active fiber skeleton, enhancing the mechanical response. In terms of affinity, fabrics deformed along the transverse direction essentially displayed affine deformation {i.e. the macroscopic strain was directly transferred to the fibers by the surrounding fabric, while fabrics deformed along the machine direction underwent non-affine deformation, and most of the macroscopic strain was not transferred to the fibers. Based on these experimental observations, a constitutive model for the mechanical behavior of the mechanically-entangled nonwoven fiber network was developed. The model accounted for the effects of non-affine deformation, anisotropic connectivity induced by the entanglement points, fiber uncurling and re-orientation as well as fiber disentanglement and pull-out from the knots. The model provided the constitutive response for a mesodomain of the fabric corresponding to the volume associated to a finite element and is divided in two blocks. The first one was the network model which established the relationship between the macroscopic deformation gradient and the microscopic response obtained by integrating the response of the fibers in the mesodomain. The second one was the fiber model, which took into account the deformation features of each set of fibers in the mesodomain, including non-affinity, uncurling, pull-out and disentanglement. As far as possible, a clear physical meaning is given to the model parameters, so they can be identified by means of independent tests. The numerical simulations based on the model were in very good agreement with the experimental results of in-plane and ballistic mechanical response of the fabrics in terms of the macroscopic mechanical response and of the micromechanisms of deformation. In addition, it provided additional information about the influence of the microstructural features (fiber orientation, anisotropic fiber connectivity, affinity) on the mechanical performance of mechanically-entangled nonwoven fabrics.
Resumo:
Two variables define the topological state of closed double-stranded DNA: the knot type, K, and ΔLk, the linking number difference from relaxed DNA. The equilibrium distribution of probabilities of these states, P(ΔLk, K), is related to two conditional distributions: P(ΔLk|K), the distribution of ΔLk for a particular K, and P(K|ΔLk) and also to two simple distributions: P(ΔLk), the distribution of ΔLk irrespective of K, and P(K). We explored the relationships between these distributions. P(ΔLk, K), P(ΔLk), and P(K|ΔLk) were calculated from the simulated distributions of P(ΔLk|K) and of P(K). The calculated distributions agreed with previous experimental and theoretical results and greatly advanced on them. Our major focus was on P(K|ΔLk), the distribution of knot types for a particular value of ΔLk, which had not been evaluated previously. We found that unknotted circular DNA is not the most probable state beyond small values of ΔLk. Highly chiral knotted DNA has a lower free energy because it has less torsional deformation. Surprisingly, even at |ΔLk| > 12, only one or two knot types dominate the P(K|ΔLk) distribution despite the huge number of knots of comparable complexity. A large fraction of the knots found belong to the small family of torus knots. The relationship between supercoiling and knotting in vivo is discussed.
Resumo:
Topoisomerase II is able to break and rejoin double-strand DNA. It controls the topological state and forms and resolves knots and catenanes. Not much is known about the relation between the chromosome segregation and condensation defects as found in yeast top2 mutants and the role of topoisomerase II in meiosis. We studied meiosis in a heat-sensitive top2 mutant of Schizosaccharomyces pombe. Topoisomerase II is not required until shortly before meiosis I. The enzyme is necessary for condensation shortly before the first meiotic division but not for early meiotic prophase condensation. DNA replication, prophase morphology, and dynamics of the linear elements are normal in the top2 mutant. The top2 cells are not able to perform meiosis I. Arrested cells have four spindle pole bodies and two spindles but only one nucleus, suggesting that the arrest is nonregulatory. Finally, we show that the arrest is partly solved in a top2 rec7 double mutant, indicating that topoisomerase II functions in the segregation of recombined chromosomes. We suggest that the inability to decatenate the replicated DNA is the primary defect in top2. This leads to a loss of chromatin condensation shortly before meiosis I, failure of sister chromatid separation, and a nonregulatory arrest.
Resumo:
A synthetic strand of RNA has been designed so that it can adopt two different topological states (a circle and a trefoil knot) when ligated into a cyclic molecule. The RNA knot and circle have been characterized by their behavior in gel electrophoresis and sedimentation experiments. This system allows one to assay for the existence of an RNA topoisomerase, because the two RNA molecules can be inter-converted only by a strand passage event. We find that the interconversion of these two species can be catalyzed by Escherichia coli DNA topoisomerase III, indicating that this enzyme can act as an RNA topoisomerase. The conversion of circles to knots is accompanied by a small amount of RNA catenane generation. These findings suggest that strand passage must be considered a potential component of the folding and modification of RNA structures.
Resumo:
We present new methods for identifying and analyzing statistically significant residue clusters that occur in three-dimensional (3D) protein structures. Residue clusters of different kinds occur in many contexts. They often feature the active site (e.g., in substrate binding), the interface between polypeptide units of protein complexes, regions of protein-protein and protein-nucleic acid interactions, or regions of metal ion coordination. The methods are illustrated with 3D clusters centering on four themes. (i) Acidic or histidine-acidic clusters associated with metal ions. (ii) Cysteine clusters including coordination of metals such as zinc or iron-sulfur structures, cysteine knots prominent in growth factors, multiple sets of buried disulfide pairings that putatively nucleate the hydrophobic core, or cysteine clusters of mostly exposed disulfide bridges. (iii) Iron-sulfur proteins and charge clusters. (iv) 3D environments of multiple histidine residues. Study of diverse 3D residue clusters offers a new perspective on protein structure and function. The algorithms can aid in rapid identification of distinctive sites, suggest correlations among protein structures, and serve as a tool in the analysis of new structures.
Resumo:
Very-long-baseline interferometry images of the nuclear region of the radio galaxy Cygnus A reveal a pronounced "core" and a knotty jet and counterjet. The knots are moving away from the core at apparent speeds which are subluminal for h = 1 [h = H0/100 km.s-1.Mpc-1;1 parsec (pc) = 3.09 x 10(16)m] and about c for h = 0.5. The jet is aligned with the outer, kiloparsec-scale jet to within 2 degrees. The counterjet has a total flux density at 5 GHz of about one-fifth of that of the jet. In the context of the twin relativistic jet model for active galactic nuclei, the jet in Cygnus A is oriented at an angle to our line of sight of 35-80 degrees and 55-85 degrees, and the intrinsic velocity of the jet fluid is 0.4-0.6c and 0.6-1c for h = 1 and h = 0.5, respectively.
Resumo:
I will discuss several issues related to the acceleration, collimation, and propagation of jets from active galactic nuclei. Hydromagnetic stresses provide the best bet for both accelerating relativistic flows and providing a certain amount of initial collimation. However, there are limits to how much "self-collimation" can be achieved without the help of an external pressurized medium. Moreover, existing models, which postulate highly organized poloidal flux near the base of the flow, are probably unrealistic. Instead, a large fraction of the magnetic energy may reside in highly disorganized "chaotic" fields. Such a field can also accelerate the flow to relativistic speeds, in some cases with greater efficiency than highly organized fields, but at the expense of self-collimation. The observational interpretation of jet physics is still hampered by a dearth of unambiguous diagnostics. Propagating disturbances in flows, such as the oblique shocks that may constitute the kiloparsec-scale "knots" in the M87 jet, may provide a wide range of untapped diagnostics for jet properties.
Resumo:
Acoustic and pelagic trawl data were collected during various pelagic surveys carried out by IFREMER in May between 2000 and 2012 (except 2001), on the eastern continental shelf of the Bay of Biscay (Pelgas series). The acoustic data were collected with a Simrad EK60 echosounder operating at 38 kHz (beam angle at -3 dB: 7°, pulse length set to 1.024 ms). The echosounder transducer was mounted on the vessel keel, at 6 m below the sea surface. The sampling design were parallel transects spaced 12 nm apart which were orientated perpendicular to the coast line from 20 m to about 200 m bottom depth. The nominal sailing speed was 10 knots and 3 knots on average during fishing operations. The scrutinising (species identification) of acoustic data was done by first characterising acoustic schools by type and then linking these types with the species composition of specific trawl hauls. The data set contains nautical area backscattering values, biomass and abundance estimates for blue whiting for one nautical mile long transect lines. Further information on the survey design, scrutinising and biomass estimation can be found in Doray et al. 2012.
Resumo:
Data were collected during various groundfish surveys carried out by IFREMER from October to December between 1997 and 2011, on the eastern continental shelf of the Bay of Biscay and in the Celtic Sea (EVHOE series). The sampling design was stratified according to latitude and depth. A 36/47 GOV trawl was used with a 20 mm mesh codend liner. Haul duration was 30 minutes at a towing speed of 4 knots. Fishing was restricted to daylight hours. Catch weights and catch numbers were recorded for all species and body size measured. The weights and numbers per haul were transformed into abundances per km**2 by considering the swept area of a standard haul (0.069 km**2).
Resumo:
Mode of access: Internet.
Resumo:
As field determinations take much effort, it would be useful to be able to predict easily the coefficients describing the functional response of free-living predators, the function relating food intake rate to the abundance of food organisms in the environment. As a means easily to parameterise an individual-based model of shorebird Charadriiformes populations, we attempted this for shorebirds eating macro-invertebrates. Intake rate is measured as the ash-free dry mass (AFDM) per second of active foraging; i.e. excluding time spent on digestive pauses and other activities, such as preening. The present and previous studies show that the general shape of the functional response in shorebirds eating approximately the same size of prey across the full range of prey density is a decelerating rise to a plateau, thus approximating the Holling type 11 ('disc equation') formulation. But field studies confirmed that the asymptote was not set by handling time, as assumed by the disc equation, because only about half the foraging time was spent in successfully or unsuccessfully attacking and handling prey, the rest being devoted to searching. A review of 30 functional responses showed that intake rate in free-living shorebirds varied independently of prey density over a wide range, with the asymptote being reached at very low prey densities (< 150/m(-2)). Accordingly, most of the many studies of shorebird intake rate have probably been conducted at or near the asymptote of the functional response, suggesting that equations that predict intake rate should also predict the asymptote. A multivariate analysis of 468 'spot' estimates of intake rates from 26 shorebirds identified ten variables, representing prey and shorebird characteristics, that accounted for 81 % of the variance in logarithm-transformed intake rate. But four-variables accounted for almost as much (77.3 %), these being bird size, prey size, whether the bird was an oystercatcher Haematopus ostralegus eating mussels Mytilus edulis, or breeding. The four variable equation under-predicted, on average, the observed 30 estimates of the asymptote by 11.6%, but this discrepancy was reduced to 0.2% when two suspect estimates from one early study in the 1960s were removed. The equation therefore predicted the observed asymptote very successfully in 93 % of cases. We conclude that the asymptote can be reliably predicted from just four easily measured variables. Indeed, if the birds are not breeding and are not oystercatchers eating mussels, reliable predictions can be obtained using just two variables, bird and prey sizes. A multivariate analysis of 23 estimates of the half-asymptote constant suggested they were smaller when prey were small but greater when the birds were large, especially in oystercatchers. The resulting equation could be used to predict the half-asymptote constant, but its predictive power has yet to be tested. As well as predicting the asymptote of the functional response, the equations will enable research workers engaged in many areas of shorebird ecology and behaviour to estimate intake rate without the need for conventional time-consuming field studies, including species for which it has not yet proved possible to measure intake rate in the field.
Resumo:
This work discusses about the relationship between literature and song. In this sense, in the music scene of Chico Science & Nação Zumbi suggest an esthetical freedom, approaching songs to oral literature. Linked to that, this research aims to analyze three songs from the Afrociberdelia (1996) album, composed by Chico Science & Nação Zumbi, namely: “Mateus Enter”, “O Cidadão do Mundo” and “Etnia” (the three first songs from this disco). This analyzis aim to clarify how those songs untie or loose the knots of colonial segregation (MIGNOLO, 2003). For that, we dialogue with a comprehension of “creolezation” as used by Glissant (2011; 2005), that studies hybridism from a post-colonial perspective.
Resumo:
From the 12th until the 17th of July 2016, research vessel Maria S. Merian entered the Nordvestfjord of Scorsby Sound (East Greenland) as part of research cruise MSM56, "Ecological chemistry in Arctic fjords". A large variety of chemical and biological parameters of fjord and meltwater were measured during this cruise to characterize biogeochemical fluxes in arctic fjords. The photo documentation described here was a side project. It was started when we were close to the Daugaard-Jensen glacier at the end of the Nordvestfjord and realized that not many people have seen this area before and photos available for scientists are probably rare. These pictures shall help to document climate and landscape changes in a remote area of East Greenland. Pictures were taken with a Panasonic Lumix G6 equipped with either a 14-42 or 45-150 objective (zoom factor available in jpg metadata). Polarizer filters were used on both objectives. The time between taking the pictures and writing down the coordinates was maximally one minute but usually shorter. The uncertainty in position is therefore small as we were steaming slowly most of the time the pictures were taken (i.e. below 5 knots). I assume the uncertainty is in most cases below 200 m radius of the noted position. I did not check the direction I directed the camera to with a compass at the beginning. Hence, the direction that was noted is an approximation based on the navigation map and the positioning of the ship. The uncertainty was probably around +/- 40° but initially (pictures 1-17) perhaps even higher as this documentation was a spontaneous idea and it took some time to get the orientation right. It should be easy, however, to find the location of the mountains and glaciers when being on the respective positions because the mountains have a quite characteristic shape. In a later stage of this documentation, I took pictures from the bridge and used the gyros to approximate the direction the camera was pointed at. Here the uncertainty was much lower (i.e. +/- 20° or better). Directions approximated with the help of gyros have degree values in the overview table. The ship data provided in the MSM56 cruise report will contain all kinds of sensor data from Maria S. Merian sensor setup. This data can also be used to further constrain the position the pictures were taken because the exact time a photo was shot is noted in the metadata of the .jpg photo file. The shipboard clock was set on UTC. It was 57 minutes and 45 seconds behind the time in the camera. For example 12:57:45 on the camera was 12:00:00 UTC on the ship. All pictures provided here can be used for scientific purposes. In case of usage in presentations etc. please acknowledge RV Maria S. Merian (MSM56) and Lennart T. Bach as author. Please inform me and ask for reprint permission in case you want to use the pictures for scientific publications. I would like to thank all participants and the crew of Maria S. Merian Cruise 56 (MSM56, Ecological chemistry in Arctic fjords).