930 resultados para Ischemia-reperfusion
Resumo:
La pratique d’activité physique fait partie intégrante des recommandations médicales pour prévenir et traiter les maladies coronariennes. Suivant un programme d’entraînement structuré, serait-il possible d’améliorer la réponse à l’exercice tout en offrant une protection cardiaque au patient? C’est ce que semblent démontrer certaines études sur le préconditionnement ischémique (PCI) induit par un test d’effort maximal. Les mêmes mécanismes physiologiques induits par le PCI sont également observés lorsqu’un brassard est utilisé pour créer des cycles d’ischémie/reperfusion sur un muscle squelettique. Cette méthode est connue sous l’appellation : préconditionnement ischémique à distance (PCID). À l’autre extrémité du spectre de l’activité physique, des sportifs ont utilisé le PCDI durant leur échauffement afin d’améliorer leurs performances. C’est dans l’objectif d’étudier ces prémisses que se sont construits les projets de recherches suivants. La première étude porte sur les effets du PCID sur des efforts supra maximaux de courte durée. Les sujets (N=16) ont exécuté un test alactique (6 * 6 sec. supra maximales) suivi d’un test lactique (30 secondes supra maximales) sur ergocycle. Les sujets avaient été aléatoirement assignés à une intervention PCID ou à une intervention contrôle (CON) avant d’entreprendre les efforts. La procédure PCID consiste à effectuer quatre cycles d’ischémie de cinq minutes à l’aide d’un brassard insufflé à 50 mm Hg de plus que la pression artérielle systolique sur le bras. Les résultats de ce projet démontrent que l’intervention PCID n’a pas d’effets significatifs sur l’amélioration de performance provenant classiquement du « système anaérobie », malgré une légère hausse de la puissance maximal en faveur du PCID sur le test de Wingate de trente secondes (795 W vs 777 W) et sur le test de force-vitesse de six secondes (856 W vs 847 W). Le deuxième essai clinique avait pour objectif d’étudier les effets du PCID, selon la méthode élaborée dans le premier projet, lors d’un effort modéré de huit minutes (75 % du seuil ventilatoire) et un effort intense de huit minutes (115 % du seuil ventilatoire) sur les cinétiques de consommation d’oxygène. Nos résultats démontrent une accélération significative des cinétiques de consommation d’oxygène lors de l’intervention PCID par rapport au CON aux deux intensités d’effort (valeur de τ1 à effort modéré : 27,2 ± 4,6 secondes par rapport à 33,7 ± 6,2, p < 0,01 et intense : 29,9 ± 4,9 secondes par rapport à 33,5 ± 4,1, p < 0,001) chez les sportifs amateurs (N=15). Cela se traduit par une réduction du déficit d’oxygène en début d’effort et une atteinte plus rapide de l’état stable. Le troisième projet consistait à effectuer une revue systématique et une méta-analyse sur la thématique du préconditionnement ischémique (PCI) induit par un test d’effort chez les patients coronariens utilisant les variables provenant de l’électrocardiogramme et des paramètres d’un test d’effort. Notre recherche bibliographique a identifié 309 articles, dont 34 qui ont été inclus dans la méta-analyse, qui représente un lot de 1 053 patients. Nos analyses statistiques démontrent que dans un effort subséquent, les patients augmentent leur temps avant d’atteindre 1 mm de sous-décalage du segment ST de 91 secondes (p < 0,001); le sous-décalage maximal diminue de 0,38 mm (p < 0,01); le double produit à 1 mm de sous-décalage du segment ST augmente de 1,80 x 103 mm Hg (p < 0,001) et le temps total d’effort augmente de 50 secondes (p < 0,001). Nos projets de recherches ont favorisé l’avancement des connaissances en sciences de l’activité physique quant à l’utilisation d’un brassard comme stimulus au PCID avant un effort physique. Nous avons évalué l’effet du PCID sur différentes voies métaboliques à l’effort pour conclure que la méthode pourrait accélérer les cinétiques de consommation d’oxygène et ainsi réduire la plage du déficit d’oxygène. Nos découvertes apportent donc un éclaircissement quant à l’amélioration des performances de type contre-la-montre étudié par d’autres auteurs. De plus, nous avons établi des paramètres cliniques permettant d’évaluer le PCI induit par un test d’effort chez les patients coronariens.
Resumo:
The Mdm2 ubiquitin ligase is an important regulator of p53 abundance and p53-dependent apoptosis. Mdm2 expression is frequently regulated by a p53 Mdm2 autoregulatory loop whereby p53 stimulates Mdm2 expression and hence its own degradation. Although extensively studied in cell lines, relatively little is known about Mdm2 expression in heart where oxidative stress (exacerbated during ischemia-reperfusion) is an important pro-apoptotic stimulus. We demonstrate that Mdm2 transcript and protein expression are induced by oxidative stress (0.2 mm H(2)O(2)) in neonatal rat cardiac myocytes. In other cells, constitutive Mdm2 expression is regulated by the P1 promoter (5' to exon 1), with inducible expression regulated by the P2 promoter (in intron 1). In myocytes, H(2)O(2) increased Mdm2 expression from the P2 promoter, which contains two p53-response elements (REs), one AP-1 RE, and two Ets REs. H(2)O(2) did not detectably increase expression of p53 mRNA or protein but did increase expression of several AP-1 transcription factors. H(2)O(2) increased binding of AP-1 proteins (c-Jun, JunB, JunD, c-Fos, FosB, and Fra-1) to an Mdm2 AP-1 oligodeoxynucleotide probe, and chromatin immunoprecipitation assays showed it increased binding of c-Jun or JunB to the P2 AP-1 RE. Finally, antisense oligonucleotide-mediated reduction of H(2)O(2)-induced Mdm2 expression increased caspase 3 activation. Thus, increased Mdm2 expression is associated with transactivation at the P2 AP-1 RE (rather than the p53 or Ets REs), and Mdm2 induction potentially represents a cardioprotective response to oxidative stress.
Resumo:
"Stress-regulated" mitogen-activated protein kinases (SR-MAPKs) comprise the stress-activated protein kinases (SAPKs)/c-Jun N-terminal kinases (JNKs) and the p38-MAPKs. In the perfused heart, ischemia/reperfusion activates SR-MAPKs. Although the agent(s) directly responsible is unclear, reactive oxygen species are generated during ischemia/reperfusion. We have assessed the ability of oxidative stress (as exemplified by H2O2) to activate SR-MAPKs in the perfused heart and compared it with the effect of ischemia/reperfusion. H2O2 activated both SAPKs/JNKs and p38-MAPK. Maximal activation by H2O2 in both cases was observed at 0.5 mM. Whereas activation of p38-MAPK by H2O2 was comparable to that of ischemia and ischemia/reperfusion, activation of the SAPKs/JNKs was less than that of ischemia/reperfusion. As with ischemia/reperfusion, there was minimal activation of the ERK MAPK subfamily by H2O2. MAPK-activated protein kinase 2 (MAPKAPK2), a downstream substrate of p38-MAPKs, was activated by H2O2 to a similar extent as with ischemia or ischemia/reperfusion. In all instances, activation of MAPKAPK2 in perfused hearts was inhibited by SB203580, an inhibitor of p38-MAPKs. Perfusion of hearts at high aortic pressure (20 kilopascals) also activated the SR-MAPKs and MAPKAPK2. Free radical trapping agents (dimethyl sulfoxide and N-t-butyl-alpha-phenyl nitrone) inhibited the activation of SR-MAPKs and MAPKAPK2 by ischemia/reperfusion. These data are consistent with a role for reactive oxygen species in the activation of SR-MAPKs during ischemia/reperfusion.
Resumo:
A conscious rabbit model was used to study the effect of ischemic preconditioning (PC) on stress-activated kinases [c-Jun NH(2)-terminal kinases (JNKs) and p38 mitogen-activated protein kinase (MAPK)] in an environment free of surgical trauma and attending external stress. Ischemic PC (6 cycles of 4-min ischemia/4-min reperfusion) induced significant activation of protein kinase C (PKC)-epsilon in the particulate fraction, which was associated with activation of p46 JNK in the nuclear fraction and p54 JNK in the cytosolic fraction; all of these changes were completely abolised by the PKC inhibitor chelerythrine. Selective enhancement of PKC-epsilon activity in adult rabbit cardiac myocytes resulted in enhanced activity of p46/p54 JNKs, providing direct in vitro evidence that PKC-epsilon is coupled to both kinases. Studies in rabbits showed that the activation of p46 JNK occurred during ischemia, whereas that of p54 JNK occurred after reperfusion. A single 4-min period of ischemia induced a robust activation of the p38 MAPK cascade, which, however, was attenuated after 5 min of reperfusion and disappeared after six cycles of 4-min ischemia/reperfusion. Overexpression of PKC-epsilon in cardiac myocytes failed to increase the p38 MAPK activity. These results demonstrate that ischemic PC activates p46 and p54 JNKs via a PKC-epsilon-dependent signaling pathway and that there are important differences between p46 and p54 JNKs with respect to the subcellular compartment (cytosolic vs. nuclear) and the mechanism (ischemia vs. reperfusion) of their activation after ischemic PC.
Resumo:
Acute lung injury following intestinal I/R depends on neutrophil-endothelial cell interactions and on cytokines drained from the gut through the lymph. Among the mediators generated during I/R, increased serum levels of IL-6 and NO are also found and might be involved in acute lung injury. Once intestinal ischemia itself may be a factor of tissue injury, in this study, we investigated the presence of IL-6 in lymph after intestinal ischemia and its effects on human umbilical vein endothelial cells (HUVECs) detachment. The involvement of NO on the increase of lung and intestinal microvascular permeability and the lymph effects on HUVEC detachment were also studied. Upon anesthesia, male Wistar rats were subjected to occlusion of the superior mesenteric artery during 45 min, followed by 2-h intestinal reperfusion. Rats were treated with the nonselective NO synthase (NOS) inhibitor L-NAME (N(omega)-nitro-L-arginine methyl ester) or with the selective inhibitor of iNOS aminoguanidine 1 h before superior mesenteric artery occlusion. Whereas treatment with L-NAME during ischemia increased both IL-6 levels in lymph and lung microvascular permeability, aminoguanidine restored the augmented intestinal plasma extravasation due to ischemia and did not induce IL-6 in lymph. On the other hand, IL-6 and lymph of intestinal I/R detached the HUVECs, whereas lymph of ischemic rats upon L-NAME treatment when incubated with anti-IL-6 prevented HUVEC detachment. It is shown that the intestinal ischemia itself is sufficient to increase intestinal microvascular permeability with involvement of iNOS activation. Intestinal ischemia and absence of constitutive NOS activity leading to additional intestinal stress both cause release of IL-6 and increase of lung microvascular permeability. Because anti-IL-6 prevented the endothelial cell injury caused by lymph at the ischemia period, the lymph-borne IL-6 might be involved with endothelial cell activation. At the reperfusion period, this cytokine does not seem to be modulated by NO.
Resumo:
One of the early phases that lead to fibrosis progression is inflammation. Once this stage is resolved, fibrosis might be prevented. Bone marrow mononuclear cells (BMMCs) are emerging as a new therapy for several pathologies, including autoimmune diseases, because they enact immunosuppression. In this study we aimed to evaluate the role of BMMC administration in a model of kidney fibrosis induced by an acute injury. C57Bl6 mice were subjected to unilateral severe ischemia by clamping the left renal pedicle for 1 h. BMMCs were isolated from femurs and tibia, and after 6 h of reperfusion, 1 x 10(6) cells were administrated intraperitoneally. At 24 h after surgery, treated animals showed a significant decrease in creatinine and urea levels when compared with untreated animals. Different administration routes were tested. Moreover, interferon (IFN) receptor knockout BMMCs were used, as this receptor is necessary for BMMC activation. Labeled BMMCs were found in ischemic kidney on FACS analysis. This improved outcome was associated with modulation of inflammation in the kidney and systemic modulation, as determined by cytokine expression profiling. Despite non-amelioration of functional parameters, kidney mRNA expression of interleukin (IL)-6 at 6 weeks was lower in BMMC-treated animals, as were levels of collagen 1, connective tissue growth factor (CTGF), transforming growth factor-beta (TGF-beta) and vimentin. Protective molecules, such as IL-10, heme oxygenase 1 (HO-1) and bone morphogenetic 7 (BMP-7), were increased in treated animals after 6 weeks. Moreover, Masson and Picrosirius red staining analyses showed less fibrotic areas in the kidneys of treated animals. Thus, early modulation of inflammation by BMMCs after an ischemic injury leads to reduced fibrosis through modulation of early inflammation.
Resumo:
This work explored the role of inhibition of cyclooxygenases (COXs) in modulating the inflammatory response triggered by acute kidney injury. C57Bl/6 mice were used. Animals were treated or not with indomethacin (IMT) prior to injury (days -1 and 0). Animals were subjected to 45 min of renal pedicle occlusion and sacrificed at 24 h after reperfusion. Serum creatinine and blood urea nitrogen, reactive oxygen species (ROS), kidney myeloperoxidase (MPO) activity, and prostaglandin E2 (PGE(2)) levels were analyzed. Tumor necrosis factor (TNF)-alpha, t-bet, interleukin (IL)-10, IL-1 beta, heme oxygenase (HO)-1, and prostaglandin E synthase (PGES) messenger RNA (mRNA) were studied. Cytokines were quantified in serum. IMT-treated animals presented better renal function with less acute tubular necrosis and reduced ROS and MPO production. Moreover, the treatment was associated with lower expression of TNF-alpha, PGE(2), PGES, and t-bet and upregulation of HO-1 and IL-10. This profile was mirrored in serum, where inhibition of COXs significantly decreased interferon (IFN)-gamma, TNF-alpha, and IL-12 p70 and upregulated IL-10. COXs seem to play an important role in renal ischemia and reperfusion injury, involving the secretion of pro-inflammatory cytokines, activation of neutrophils, and ROS production. Inhibition of COX pathway is intrinsically involved with cytoprotection.
Resumo:
Mesenchymal stem cells (MSCs) have regenerative properties in acute kidney injury, but their role in chronic kidney diseases is still unknown. More specifically, it is not known whether MSCs halt fibrosis. The purpose of this work was to investigate the role of MSCs in fibrogenesis using a model of chronic renal failure. MSCs were obtained from the tibias and femurs of male Wistar-EPM rats. Female Wistar rats were subjected to the remnant model, and 2 vertical bar x vertical bar 10(5) MSCs were intravenously administrated to each rat every other week for 8 weeks or only once and followed for 12 weeks. SRY gene expression was observed in female rats treated with male MSCs, and immune localization of CD73(+)CD90(+) cells at 8 weeks was also assessed. Serum and urine analyses showed an amelioration of functional parameters in MSC-treated animals at 8 weeks, but not at 12 weeks. Masson`s trichrome and Sirius red staining demonstrated reduced levels of fibrosis in MSC-treated animals. These results were corroborated by reduced vimentin, type I collagen, transforming growth factor beta, fibroblast specific protein 1 (FSP-1), monocyte chemoattractant protein 1, and Smad3 mRNA expression and alpha smooth muscle actin and FSP-1 protein expression. Renal interleukin (IL)-6 and tumor necrosis factor alpha mRNA expression levels were significantly decreased after MSC treatment, whereas IL-4 and IL-10 expression levels were increased. All serum cytokine expression levels were decreased in MSC-treated animals. Taken together, these results suggested that MSC therapy can indeed modulate the inflammatory response that follows the initial phase of a chronic renal injury. The immunosuppressive and remodeling properties of MSCs may be involved in the decreased fibrosis in the kidney. STEM CELLS 2009;27:3063-3073
Resumo:
Introduction: Toll-like receptors (TLR) comprehend an emerging family of receptors that recognize pathogen-associated molecular patterns and promote the activation of leukocytes. Surgical trauma and ischemia-reperfusion injury are likely to provide exposure to endogenous ligands for TLR in virtually all kidney transplant recipients. Methods: Macroarray (GEArray OHS-018.2 Series-Superarray) analyses of 128 genes involved in TLR signaling pathway were performed in nephrectomy samples of patients with chronic allograft nephropathy (CAN) and acute rejection (AR, vascular and non vascular). The analysis of each membrane was performed by GEArray Expression Analysis Suite 2.0. Results: Macroarray profile identified a gene expression signature that could discriminate CAN and AR. Three genes were significantly expressed between CAN and vascular AR: Pellino 2; IL 8 and UBE2V1. In relation to vascular and non-vascular AR, there were only two genes with statistical significance: IL-6 and IRAK-3. Conclusion: Vascular and non-vascular AR and CAN showed different expression of a few genes in TLR pathway. The analysis of nephrectomy showed that activation of TLR pathway is present in AR and CAN. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Therapy with stem cells has showed to be promising for acute kidney injury (AKI), although how it works is still controversial. Modulation of the inflammatory response is one possible mechanism. Most of published data relies on early time and whether the protection is still maintained after that is not known. Here, we analyzed whether immune modulation continues after 24 h of reperfusion. MSC were obtained from male Wistar rats. After 3-5 passages, cells were screened for CD73, CD90, CD44, CD45, CD29 and CD 31. In addition, MSC were submitted to differentiation in adipocyte and in osteocyte. AKI was induced by bilaterally clamping of renal pedicles for 60 min. Six hours after injury, MSC (2 x 105 cells) were administered intravenously. MSC-treated animals presented the lowest serum creatinine compared to non-treated animals (24 h: 1.3 +/- 0.21 vs. 3.23 +/- 0.89 mg/dl, p<0.05). The improvement in renal function was followed by a lower expression of IL-1b, IL-6 and TNF-alpha and higher expression of IL-4 and IL-10. However, 48 h after reperfusion, this cytokine profile has changed. The decrease in Th1 cytokines was less evident and IL-6 was markedly up regulated. PCNA analysis showed that regeneration occurs faster in kidney tissues of MSC-treated animals than in controls at 24 h. And also ratio of Bcl-2/Bad was higher at treated animals after 24 and 48 h. Our data demonstrated that the immunomodulatory effects of MSC occur at very early time point, changing the inflammation profile toward a Th2 profile. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Ischemia reperfusion injury (IRI) is a potential contributor for the development of chronic allograft nephropathy. T cells are important mediators of injury, even in the absence of alloantigens. We performed a depletion of TCD4(+)CTLA4(+)Foxp3(+) cells with anti-CD25(PC61), a treatment with anti-GITR (DTA-1) and rat-IgG, followed by 45 min of ischemia and 24/72 h of reperfusion, and then analyzed blood urea, kidney histopathology and gene expression in kidneys by QReal Time PCR. After 24 h of reperfusion, depletion of TCD4(+)CTLA4(+)Foxp3(+) cells reached 30.3%(spleen) and 67.8%(lymph nodes). 72 h after reperfusion depletion reached 43.1%(spleen) and 90.22%(lymph nodes) and depleted animals presented with significantly poorer renal function, while DTA-1 (anti-GITR)-treated ones showed a significant protection, all compared to serum urea from control group (IgG: 150.10 +/- 50.04; PC61: 187.23 +/- 31.38; DTA-1: 64.53 +/- 25.65, mg/dL, p<0.05). These data were corroborated by histopathology. We observed an increase of HO-1 expression in animals treated with DTA-1 at 72 h of reperfusion with significant differences. Thus, our results suggest that PC61 (anti-CD25) mAb treatment is deleterious, while DTA-1 (anti-GITR) mAb treatment presents a protective role in the renal IRI, indicating that some regulatory populations of T cells might have a role in IRI. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Background: Hepatocyte growth factor (HGF) is overexpressed after acute kidney injury (AKI). The aim of this study was to evaluate the role of endogenous HGF in the progression of the inflammatory response in glycerol-induced AKI (Gly-AKI) in rats. Methods: Renal and systemic HGF expressions were evaluated during the development of Gly-AKI. Subsequently, the blockade of endogenous HGF was analyzed in rats treated with anti-HGF antibody concomitant to glycerol injection. Apoptosis, cell infiltration and chemokine and cytokine profiles were investigated. Results: We detected an early peak of renal and plasma HGF protein expressions 3 h after glycerol injection. The pharmacological blockade of the endogenous HGF exacerbated the renal impairment, the tubular apoptosis, the renal expression of monocyte chemoattractant protein-1 and the macrophage, CD43+, CD4+ and CD8+ T lymphocytes renal infiltration. The analysis of mRNA expressions of Th1 (t-bet, TNF-alpha, IL-1 beta) and Th2 (gata-3, IL-4, IL-10) cytokines showed a Th1-polarized response in Gly-AKI rats that was aggravated with the anti-HGF treatment. Conclusion: Endogenous HGF attenuates the renal inflammatory response, leukocyte infiltration and Th1 polarization after glycerol injection. The control of cellular immune response may partly explain the protective effect of endogenous HGF in the development of Gly-AKI. Copyright (C) 2008 S. Karger AG, Basel
Resumo:
Focal and segmental glomerulosclerosis (FSGS) is one of the most important causes of end-stage renal failure. The bradykinin B1 receptor has been associated with tissue inflammation and renal fibrosis. To test for a role of the bradykinin B1 receptor in podocyte injury, we pharmacologically modulated its activity at different time points in an adriamycin-induced mouse model of FSGS. Estimated albuminuria and urinary protein to creatinine ratios correlated with podocytopathy. Adriamycin injection led to loss of body weight, proteinuria, and upregulation of B1 receptor mRNA. Early treatment with a B1 antagonist reduced albuminuria and glomerulosclerosis, and inhibited the adriamycin-induced downregulation of podocin, nephrin, and alpha-actinin-4 expression. Moreover, delayed treatment with antagonist also induced podocyte protection. Conversely, a B1 agonist aggravated renal dysfunction and even further suppressed the levels of podocyte-related molecules. Thus, we propose that kinin has a crucial role in the pathogenesis of FSGS operating through bradykinin B1 receptor signaling. Kidney International (2011) 79, 1217-1227; doi:10.1038/ki.2011.14; published online 16 March 2011
Resumo:
Heme oxygenase-1 (HO-1) has a microsatellite polymorphism based on the number of guanosine-thymidine nucleotide repeats (GT) repeats that regulates expression levels and could have an impact on organ survival post-injury. We correlated HO-1 polymorphism with renal graft function. The HO-1 gene was sequenced (N = 181), and the allelic repeats were divided into subclasses: short repeats (S) (< 27 repeats) and long repeats (L) (>= 27 repeats). A total of 47.5% of the donors carried the S allele. The allograft function was statistically improved six months, two and three yr after transplantation in patients receiving kidneys from donors with an S allele. For the recipients carrying the S allele (50.3%), the allograft function was also better throughout the follow-up, but reached statistical significance only three yr after transplantation (p = 0.04). Considering only those patients who had chronic allograft nephropathy (CAN; 74 of 181), allograft function was also better in donors and in recipients carrying the S allele, two and three yr after transplantation (p = 0.03). Recipients of kidney transplantation from donors carrying the S allele presented better function even in the presence of CAN.
Resumo:
The purpose of this research was to evaluate the severity of renal ischemia/reperfusion injury as determined by histology and by laser-induced fluorescence (LIF) with excitation wavelengths of 442 nm and 532 nm. Wistar rats (four groups of six animals) were subjected to left renal warm ischemia for 20, 40, 60 and 80 min followed by 10 min of reperfusion. Autofluorescence was determined before ischemia (control) and then every 5-10 min thereafter. Tissue samples for histology were harvested from the right kidney (control) and from the left kidney after reperfusion. LIF and ischemia time showed a significant correlation (p < 0.0001 and r (2)=0.47, and p=0.006 and r (2)=0.25, respectively, for the excitation wavelengths of 442 nm and 532 nm). Histological scores showed a good correlation with ischemia time (p < 0.0001). The correlations between optical spectroscopy values and histological damage were: LIF at 442 nm p < 0.0001, LIF at 532 nm p=0.001; IFF (peak of back scattered light/LIF) at 442 nm p > 0.05, and IFF at 532 nm p > 0.05. After reperfusion LIF tended to return to preischemic basal levels which occurred in the presence of histological damage. This suggests that factors other than morphological alterations may have a more relevant effect on changes observed in LIF. In conclusion, renal ischemia/reperfusion changed tissue fluorescence induced by laser. The excitation light of 442 nm showed a better correlation with the ischemia time and with the severity of tissue injury.